論文の概要: MARL for Decentralized Electric Vehicle Charging Coordination with V2V
Energy Exchange
- arxiv url: http://arxiv.org/abs/2308.14111v1
- Date: Sun, 27 Aug 2023 14:06:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-29 16:43:13.544922
- Title: MARL for Decentralized Electric Vehicle Charging Coordination with V2V
Energy Exchange
- Title(参考訳): v2vエネルギー交換による分散型電気自動車充電コーディネーションのためのmarl
- Authors: Jiarong Fan, Hao Wang, Ariel Liebman
- Abstract要約: 本稿では、車両間エネルギー交換(V2V)を考慮したEV充電調整について述べる。
本稿では,EV充電とV2Vエネルギー交換を協調するマルチエージェント強化学習(MARL)手法を提案する。
- 参考スコア(独自算出の注目度): 5.442116840518914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective energy management of electric vehicle (EV) charging stations is
critical to supporting the transport sector's sustainable energy transition.
This paper addresses the EV charging coordination by considering
vehicle-to-vehicle (V2V) energy exchange as the flexibility to harness in EV
charging stations. Moreover, this paper takes into account EV user experiences,
such as charging satisfaction and fairness. We propose a Multi-Agent
Reinforcement Learning (MARL) approach to coordinate EV charging with V2V
energy exchange while considering uncertainties in the EV arrival time, energy
price, and solar energy generation. The exploration capability of MARL is
enhanced by introducing parameter noise into MARL's neural network models.
Experimental results demonstrate the superior performance and scalability of
our proposed method compared to traditional optimization baselines. The
decentralized execution of the algorithm enables it to effectively deal with
partial system faults in the charging station.
- Abstract(参考訳): 電気自動車(ev)充電ステーションの効率的なエネルギー管理は、輸送セクターの持続可能なエネルギー移行を支える上で重要である。
本稿では、EV充電ステーションのフレキシビリティとして車両間エネルギー交換(V2V)を考慮したEV充電調整について述べる。
さらに,本稿では,満足度や公平性などのevユーザエクスペリエンスについても考察する。
本稿では,EVの到着時間,エネルギー価格,太陽エネルギー生成の不確実性を考慮して,EV充電とV2Vエネルギー交換を協調するマルチエージェント強化学習(MARL)手法を提案する。
MARLの探索能力は、MARLのニューラルネットワークモデルにパラメータノイズを導入することで強化される。
その結果,従来の最適化基準と比較して,提案手法の性能とスケーラビリティが向上した。
アルゴリズムの分散実行により、充電ステーション内の部分的なシステム障害を効果的に処理できる。
関連論文リスト
- Electric Vehicles coordination for grid balancing using multi-objective
Harris Hawks Optimization [0.0]
再生可能エネルギーの台頭は、地域グリッドのエネルギー収支に技術的および運用上の課題をもたらす電気自動車(EV)へのシフトと一致している。
複数のEVからグリッドへの電力フローの調整には、高度なアルゴリズムとロードバランシング戦略が必要である。
本稿では,安定した電力供給と安定したローカルグリッドの維持を目標として,一日のEVフリート調整モデルを提案する。
論文 参考訳(メタデータ) (2023-11-24T15:50:37Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
電気自動車充電ステーション(EVCS)は、グリーントランスポートの実現に向けた重要なステップとなる。
我々は、攻撃者がスマート充電操作中に交換された情報を操作しているEV充電に対する充電操作攻撃(CMA)を調査した。
本稿では,EV充電に関わるパラメータを監視してCMAを検出する,教師なしのディープラーニングに基づくメカニズムを提案する。
論文 参考訳(メタデータ) (2023-10-18T18:38:59Z) - Recent Progress in Energy Management of Connected Hybrid Electric
Vehicles Using Reinforcement Learning [6.851787321368938]
電気輸送へのシフトは、化石燃料消費に関する環境問題を抑制することを目的としている。
HEVからコネクテッドハイブリッド電気自動車(CHEV)へのエネルギー管理システム(EMS)の進化は、重要なシフトを表している。
このレビューは、将来の持続可能な輸送システムに対するRLベースのソリューションのギャップを橋渡しし、課題、進歩、潜在的貢献を明らかにする。
論文 参考訳(メタデータ) (2023-08-28T14:12:52Z) - Federated Reinforcement Learning for Electric Vehicles Charging Control
on Distribution Networks [42.04263644600909]
マルチエージェント深部強化学習(MADRL)はEV充電制御において有効であることが証明されている。
既存のMADRLベースのアプローチでは、配電ネットワークにおけるEV充電/放電の自然な電力フローを考慮できない。
本稿では,マルチEV充電/放電と最適電力流で動作する放射分布ネットワーク(RDN)を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-17T05:34:46Z) - Deep Reinforcement Learning-Based Battery Conditioning Hierarchical V2G
Coordination for Multi-Stakeholder Benefits [3.4529246211079645]
本研究では, 深部強化学習(DRL)とProof of Stakeアルゴリズムに基づく多階層型階層型V2Gコーディネートを提案する。
マルチステークホルダには、電力グリッド、EVアグリゲータ(EVA)、ユーザが含まれており、提案した戦略はマルチステークホルダーのメリットを達成することができる。
論文 参考訳(メタデータ) (2023-08-01T01:19:56Z) - Solar Power driven EV Charging Optimization with Deep Reinforcement
Learning [6.936743119804558]
電気自動車(EV)や太陽光発電システム(PV)などの分散型エネルギー資源は、住宅用電力システムに継続的に統合されている。
本稿では、クリーンで太陽エネルギーの消費を優先しながら、家庭用EV充電の課題に対処することを目的とする。
論文 参考訳(メタデータ) (2022-11-17T11:52:27Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
本稿では、動的環境下で異なるEVユーザに対して最適なEV充電/放電制御戦略を開発する。
多様なユーザの行動や動的環境に適合する水平連合強化学習法(HFRL)を提案する。
シミュレーションの結果,提案したリアルタイムEV充電/放電制御戦略は,様々な要因において良好に機能することが示された。
論文 参考訳(メタデータ) (2022-10-04T08:22:46Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Fed-BEV: A Federated Learning Framework for Modelling Energy Consumption
of Battery Electric Vehicles [5.817576247456001]
バッテリ電気自動車(BEV)は、バッテリパックに蓄えられた化学エネルギーのみを推進に使用する。
BEV(Fed-BEV)のエネルギー消費をモデル化するための新しい枠組みを提案する。
具体的には、Fed-BEVフレームワークに関わるBEVのグループが互いに学び、エネルギー消費モデルを共同で強化することができる。
論文 参考訳(メタデータ) (2021-08-05T01:56:09Z) - Risk Adversarial Learning System for Connected and Autonomous Vehicle
Charging [43.42105971560163]
我々は、コネクテッドかつ自律的な自動車充電インフラ(CAV-CI)のための合理的意思決定支援システム(RDSS)の設計について検討する。
検討されたCAV-CIでは、配電系統オペレーター(DSO)が電気自動車供給装置(EVSE)を配備し、人間駆動のコネクテッドカー(CV)と自動運転車(AV)のためのEV充電設備を提供する。
人力EVによる充電要求は、実際の需要よりもエネルギーと充電時間を必要とすると不合理になる。
我々は,CAV-CIが解決する新たなリスク対向型マルチエージェント学習システム(ALS)を提案する。
論文 参考訳(メタデータ) (2021-08-02T02:38:15Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。