論文の概要: A correlation-based fuzzy cluster validity index with secondary options
detector
- arxiv url: http://arxiv.org/abs/2308.14785v1
- Date: Mon, 28 Aug 2023 16:40:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 17:06:35.110263
- Title: A correlation-based fuzzy cluster validity index with secondary options
detector
- Title(参考訳): 二次オプション検出器を用いた相関型ファジィクラスタ妥当性指標
- Authors: Nathakhun Wiroonsri and Onthada Preedasawakul
- Abstract要約: 本稿では,Wiroonsri-Preedasawakul(WP)インデックスとして知られる相関に基づくファジィクラスタの妥当性指標を提案する。
我々は,Xie-Beni,Pakhira-Bandyopadhyay-Maulik,Tang,Wu-Li,Generalized C,Kwon2などの既存指標と比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The optimal number of clusters is one of the main concerns when applying
cluster analysis. Several cluster validity indexes have been introduced to
address this problem. However, in some situations, there is more than one
option that can be chosen as the final number of clusters. This aspect has been
overlooked by most of the existing works in this area. In this study, we
introduce a correlation-based fuzzy cluster validity index known as the
Wiroonsri-Preedasawakul (WP) index. This index is defined based on the
correlation between the actual distance between a pair of data points and the
distance between adjusted centroids with respect to that pair. We evaluate and
compare the performance of our index with several existing indexes, including
Xie-Beni, Pakhira-Bandyopadhyay-Maulik, Tang, Wu-Li, generalized C, and Kwon2.
We conduct this evaluation on four types of datasets: artificial datasets,
real-world datasets, simulated datasets with ranks, and image datasets, using
the fuzzy c-means algorithm. Overall, the WP index outperforms most, if not
all, of these indexes in terms of accurately detecting the optimal number of
clusters and providing accurate secondary options. Moreover, our index remains
effective even when the fuzziness parameter $m$ is set to a large value. Our R
package called WPfuzzyCVIs used in this work is also available in
https://github.com/nwiroonsri/WPfuzzyCVIs.
- Abstract(参考訳): クラスタ分析を適用する上で,クラスタの最適な数を主な関心事のひとつに挙げる。
この問題に対処するためにいくつかのクラスタ妥当性指標が導入された。
しかし、いくつかの状況では、最後の数のクラスタとして選択できる選択肢が複数存在する。
この側面は、この分野の既存の作品の大半で見過ごされている。
本研究では,Wiroonsri-Preedasawakul(WP)インデックスと呼ばれる相関に基づくファジィクラスタの妥当性指標を提案する。
この指標は、データポイント間の実際の距離と、そのペアに対する調整されたセントロイド間の距離との相関に基づいて定義される。
我々は,Xie-Beni,Pakhira-Bandyopadhyay-Maulik,Tang,Wu-Li,Generalized C,Kwon2などの既存指標と比較した。
この評価をファジィc-meansアルゴリズムを用いて,人工データセット,実世界のデータセット,ランク付きシミュレーションデータセット,画像データセットの4種類のデータセットについて行った。
全体として、wpインデックスは、クラスタの最適な数を正確に検出し、正確な二次オプションを提供するという点で、これらインデックスのほとんどを上回っている。
さらに、ファジィパラメータ$m$が大きな値に設定された場合でも、インデックスは有効である。
この作業で使用されるWPfuzzyCVIsと呼ばれるRパッケージもhttps://github.com/nwiroonsri/WPfuzzyCVIsで利用可能です。
関連論文リスト
- ABCDE: Application-Based Cluster Diff Evals [49.1574468325115]
それは実用性を目指しており、アイテムはアプリケーション固有の重要な値を持つことができ、クラスタリングがどちらが優れているかを判断するときに人間の判断を使うのは粗悪であり、アイテムの任意のスライスのためのメトリクスを報告できる。
クラスタリング品質の差分を測定するアプローチは、高価な地平を前もって構築し、それに関して各クラスタリングを評価する代わりに、ABCDEはクラスタリング間の実際の差分に基づいて、判定のための質問をサンプリングする。
論文 参考訳(メタデータ) (2024-07-31T08:29:35Z) - MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence [97.93517982908007]
NCCは、ドメイン間数ショットの分類において、少数ショットの分類が可能なメートル法空間を構築するために表現を学ぶことを目的としている。
本稿では,異なるクラスから得られた2つの標本の NCC 学習表現に高い類似性があることを見出した。
ラベル付きデータによって示されるクラスタ構造にマッチするクラス固有の表現の集合を学習するために、最適化されたカーネル依存(MOKD)を最大化する二段階最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T05:59:52Z) - A Bayesian cluster validity index [0.0]
クラスタ妥当性指標(CVI)は、データセット内のクラスタの最適な数を特定するように設計されている。
既存の指標に基づくベイズクラスタ妥当性指数(BCVI)を導入する。
私たちのBCVIは、ユーザの専門知識が価値のある状況において明確なアドバンテージを提供しています。
論文 参考訳(メタデータ) (2024-02-03T14:23:36Z) - Superclustering by finding statistically significant separable groups of
optimal gaussian clusters [0.0]
本稿では,BIC基準の観点から,最適なデータセットをグループ化することで,データセットをクラスタリングするアルゴリズムを提案する。
このアルゴリズムの重要な利点は、既に訓練済みのクラスタに基づいて、新しいデータの正しいスーパークラスタを予測する能力である。
論文 参考訳(メタデータ) (2023-09-05T23:49:46Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - A novel cluster internal evaluation index based on hyper-balls [11.048887848164268]
クラスタ分析において、品質を評価し、最適なクラスタ数を決定することが重要である。
本稿では,データセットの多粒度特徴付けを行い,ハイパーボールを得る。
ハイパーボール(HCVI)に基づくクラスタ内部評価指標を定義する。
論文 参考訳(メタデータ) (2022-12-30T02:56:40Z) - K-Splits: Improved K-Means Clustering Algorithm to Automatically Detect
the Number of Clusters [0.12313056815753944]
本稿では,k-meansに基づく改良された階層型アルゴリズムであるk-splitsを紹介する。
提案手法の主な利点は,精度と速度である。
論文 参考訳(メタデータ) (2021-10-09T23:02:57Z) - Determinantal consensus clustering [77.34726150561087]
本稿では,クラスタリングアルゴリズムのランダム再起動における決定点プロセス (DPP) の利用を提案する。
DPPは部分集合内の中心点の多様性を好んでいる。
DPPとは対照的に、この手法は多様性の確保と、すべてのデータフェースについて良好なカバレッジを得るために失敗することを示す。
論文 参考訳(メタデータ) (2021-02-07T23:48:24Z) - A New Validity Index for Fuzzy-Possibilistic C-Means Clustering [6.174448419090291]
Fuzzy-Possibilistic (FP)指数は、形状や密度の異なるクラスターの存在下でうまく機能する。
FPCMはファジィの度合いと典型性の度合いを事前選択する必要がある。
論文 参考訳(メタデータ) (2020-05-19T01:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。