Are foundation models for computer vision good conformal predictors?
- URL: http://arxiv.org/abs/2412.06082v2
- Date: Tue, 11 Mar 2025 12:55:06 GMT
- Title: Are foundation models for computer vision good conformal predictors?
- Authors: Leo Fillioux, Julio Silva-RodrÃguez, Ismail Ben Ayed, Paul-Henry Cournède, Maria Vakalopoulou, Stergios Christodoulidis, Jose Dolz,
- Abstract summary: We study the behaviour of vision and vision-language foundation models under Conformal Prediction (CP)<n>Our findings reveal that foundation models are well-suited for conformalization procedures, particularly those integrating Vision Transformers.<n>We also show that few-shot adaptation of Vision-Language Models (VLMs) to downstream tasks, whose popularity is surging, enhances conformal scores compared to zero-shot predictions.
- Score: 17.53651859360999
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in self-supervision and contrastive learning have brought the performance of foundation models to unprecedented levels in a variety of tasks. Fueled by this progress, these models are becoming the prevailing approach for a wide array of real-world vision problems, including risk-sensitive and high-stakes applications. However, ensuring safe deployment in these scenarios requires a more comprehensive understanding of their uncertainty modeling capabilities, which has been barely explored. In this work, we delve into the behaviour of vision and vision-language foundation models under Conformal Prediction (CP), a statistical framework that provides theoretical guarantees of marginal coverage of the true class. Across extensive experiments including popular vision classification benchmarks, well-known foundation vision models, and three CP methods, our findings reveal that foundation models are well-suited for conformalization procedures, particularly those integrating Vision Transformers. We also show that calibrating the confidence predictions of these models, a popular strategy to improve their uncertainty quantification, actually leads to efficiency degradation of the conformal set on adaptive CP methods. Furthermore, few-shot adaptation of Vision-Language Models (VLMs) to downstream tasks, whose popularity is surging, enhances conformal scores compared to zero-shot predictions. Last, our empirical study exposes APS as particularly promising in the context of vision foundation models, as it does not violate the marginal coverage guarantees across multiple challenging, yet realistic scenarios.
Related papers
- A Meaningful Perturbation Metric for Evaluating Explainability Methods [55.09730499143998]
We introduce a novel approach, which harnesses image generation models to perform targeted perturbation.
Specifically, we focus on inpainting only the high-relevance pixels of an input image to modify the model's predictions while preserving image fidelity.
This is in contrast to existing approaches, which often produce out-of-distribution modifications, leading to unreliable results.
arXiv Detail & Related papers (2025-04-09T11:46:41Z) - Look Before Leap: Look-Ahead Planning with Uncertainty in Reinforcement Learning [4.902161835372679]
We propose a novel framework for uncertainty-aware policy optimization with model-based exploratory planning.
In the policy optimization phase, we leverage an uncertainty-driven exploratory policy to actively collect diverse training samples.
Our approach offers flexibility and applicability to tasks with varying state/action spaces and reward structures.
arXiv Detail & Related papers (2025-03-26T01:07:35Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
In safety-critical applications such as medical imaging and autonomous driving, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks.
A notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models.
This study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks.
arXiv Detail & Related papers (2024-05-14T18:05:19Z) - Bayesian Exploration of Pre-trained Models for Low-shot Image Classification [14.211305168954594]
This work proposes a simple and effective probabilistic model ensemble framework based on Gaussian processes.
We achieve the integration of prior knowledge by specifying the mean function with CLIP and the kernel function.
We demonstrate that our method consistently outperforms competitive ensemble baselines regarding predictive performance.
arXiv Detail & Related papers (2024-03-30T10:25:28Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
We present a world model that learns invariant features using contrastive unsupervised learning and an intervention-invariant regularizer.
Our method outperforms current state-of-the-art model-based and model-free RL methods and significantly improves on out-of-distribution point navigation tasks evaluated on the iGibson benchmark.
arXiv Detail & Related papers (2023-12-14T15:53:07Z) - On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
Foundations for vision and language, pre-trained on extensive sets of natural image and text data, have emerged as a promising approach.
We compare the generalization performance to unseen domains of various pre-trained models after being fine-tuned on the same in-distribution dataset.
We further developed a new Bayesian uncertainty estimation for frozen models and used them as an indicator to characterize the model's performance on out-of-distribution data.
arXiv Detail & Related papers (2023-11-18T14:52:10Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
Recent studies reveal that deep neural networks (DNNs) are prone to making overconfident predictions.
We propose a new train-time calibration method, which features a simple, plug-and-play auxiliary loss known as multi-class alignment of predictive mean confidence and predictive certainty (MACC)
Our method achieves state-of-the-art calibration performance for both in-domain and out-domain predictions.
arXiv Detail & Related papers (2023-09-06T00:56:24Z) - Group-Conditional Conformal Prediction via Quantile Regression
Calibration for Crop and Weed Classification [0.0]
This article presents the conformal prediction framework that provides valid statistical guarantees on the predictive performance of any black box prediction machine.
The framework is exposed with a focus on its practical aspects and special attention accorded to the Adaptive Prediction Sets (APS) approach.
To tackle this shortcoming, group-conditional conformal approaches are presented.
arXiv Detail & Related papers (2023-08-29T08:02:41Z) - Uncertainty Estimation of Transformers' Predictions via Topological Analysis of the Attention Matrices [3.1466086042810884]
Transformer-based language models have set new benchmarks across a wide range of NLP tasks.
reliably estimating the uncertainty of their predictions remains a significant challenge.
We tackle these limitations by harnessing the geometry of attention maps across multiple heads and layers to assess model confidence.
Our method significantly outperforms existing uncertainty estimation techniques on benchmarks for acceptability judgments and artificial text detection.
arXiv Detail & Related papers (2023-08-22T09:17:45Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Consistency Regularization for Deep Face Anti-Spoofing [69.70647782777051]
Face anti-spoofing (FAS) plays a crucial role in securing face recognition systems.
Motivated by this exciting observation, we conjecture that encouraging feature consistency of different views may be a promising way to boost FAS models.
We enhance both Embedding-level and Prediction-level Consistency Regularization (EPCR) in FAS.
arXiv Detail & Related papers (2021-11-24T08:03:48Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.