The Responsible Development of Automated Student Feedback with Generative AI
- URL: http://arxiv.org/abs/2308.15334v2
- Date: Tue, 30 Jul 2024 06:36:22 GMT
- Title: The Responsible Development of Automated Student Feedback with Generative AI
- Authors: Euan D Lindsay, Mike Zhang, Aditya Johri, Johannes Bjerva,
- Abstract summary: This paper identifies four critical ethical considerations for implementing generative AI tools to provide automated feedback to students.
The goal of this work is to enable the use of AI systems to automate mundane assessment and feedback tasks, without introducing a "tyranny of the majority"
- Score: 6.008616775722921
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contribution: This paper identifies four critical ethical considerations for implementing generative AI tools to provide automated feedback to students. Background: Providing rich feedback to students is essential for supporting student learning. Recent advances in generative AI, particularly with large language models (LLMs), provide the opportunity to deliver repeatable, scalable and instant automatically generated feedback to students, making abundant a previously scarce and expensive learning resource. Such an approach is feasible from a technical perspective due to these recent advances in Artificial Intelligence (AI) and Natural Language Processing (NLP); while the potential upside is a strong motivator, doing so introduces a range of potential ethical issues that must be considered as we apply these technologies. Intended Outcomes: The goal of this work is to enable the use of AI systems to automate mundane assessment and feedback tasks, without introducing a "tyranny of the majority", where the needs of minorities in the long tail are overlooked because they are difficult to automate. Application Design: This paper applies an extant ethical framework used for AI and machine learning to the specific challenge of providing automated feedback to student engineers. The task is considered from both a development and maintenance perspective, considering how automated feedback tools will evolve and be used over time. Findings: This paper identifies four key ethical considerations for the implementation of automated feedback for students: Participation, Development, Impact on Learning and Evolution over Time.
Related papers
- Generative AI and Its Impact on Personalized Intelligent Tutoring Systems [0.0]
Generative AI enables personalized education through dynamic content generation, real-time feedback, and adaptive learning pathways.
Report explores key applications such as automated question generation, customized feedback mechanisms, and interactive dialogue systems.
Future directions highlight the potential advancements in multimodal AI integration, emotional intelligence in tutoring systems, and the ethical implications of AI-driven education.
arXiv Detail & Related papers (2024-10-14T16:01:01Z) - Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants [175.9723801486487]
We evaluate whether two AI assistants, GPT-3.5 and GPT-4, can adequately answer assessment questions.
GPT-4 answers an average of 65.8% of questions correctly, and can even produce the correct answer across at least one prompting strategy for 85.1% of questions.
Our results call for revising program-level assessment design in higher education in light of advances in generative AI.
arXiv Detail & Related papers (2024-08-07T12:11:49Z) - Human-Centered Automation [0.3626013617212666]
The paper argues for the emerging area of Human-Centered Automation (HCA), which prioritizes user needs and preferences in the design and development of automation systems.
The paper discusses the limitations of existing automation approaches, the challenges in integrating AI and RPA, and the benefits of human-centered automation for productivity, innovation, and democratizing access to these technologies.
arXiv Detail & Related papers (2024-05-24T22:12:28Z) - AI-Tutoring in Software Engineering Education [0.7631288333466648]
We conducted an exploratory case study by integrating the GPT-3.5-Turbo model as an AI-Tutor within the APAS Artemis.
The findings highlight advantages, such as timely feedback and scalability.
However, challenges like generic responses and students' concerns about a learning progress inhibition when using the AI-Tutor were also evident.
arXiv Detail & Related papers (2024-04-03T08:15:08Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - ActiveAI: Introducing AI Literacy for Middle School Learners with
Goal-based Scenario Learning [0.0]
The ActiveAI project addresses key challenges in AI education for grades 7-9 students.
The app incorporates a variety of learner inputs like sliders, steppers, and collectors to enhance understanding.
The project is currently in the implementation stage, leveraging the intelligent tutor design principles for app development.
arXiv Detail & Related papers (2023-08-21T11:43:43Z) - Assigning AI: Seven Approaches for Students, with Prompts [0.0]
This paper examines the transformative role of Large Language Models (LLMs) in education and their potential as learning tools.
The authors propose seven approaches for utilizing AI in classrooms: AI-tutor, AI-coach, AI-mentor, AI-teammate, AI-tool, AI-simulator, and AI-student.
arXiv Detail & Related papers (2023-06-13T03:36:36Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.