論文の概要: Multi-View Oriented GPLVM: Expressiveness and Efficiency
- arxiv url: http://arxiv.org/abs/2502.08253v1
- Date: Wed, 12 Feb 2025 09:49:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:50:08.021210
- Title: Multi-View Oriented GPLVM: Expressiveness and Efficiency
- Title(参考訳): マルチビュー指向のGPLVM:表現性と効率性
- Authors: Zi Yang, Ying Li, Zhidi Lin, Michael Minyi Zhang, Pablo M. Olmos,
- Abstract要約: スペクトル密度とカーネル関数の新たな双対性を導入する。
MV-GPLVMに対して、NG-SM(Next-Gen Spectral Mixture)と呼ばれる汎用的で表現力のあるカーネルを導出する。
提案手法は,有意な潜在表現を学習する際の最先端モデルよりも一貫して優れる。
- 参考スコア(独自算出の注目度): 8.459922325396155
- License:
- Abstract: The multi-view Gaussian process latent variable model (MV-GPLVM) aims to learn a unified representation from multi-view data but is hindered by challenges such as limited kernel expressiveness and low computational efficiency. To overcome these issues, we first introduce a new duality between the spectral density and the kernel function. By modeling the spectral density with a bivariate Gaussian mixture, we then derive a generic and expressive kernel termed Next-Gen Spectral Mixture (NG-SM) for MV-GPLVMs. To address the inherent computational inefficiency of the NG-SM kernel, we propose a random Fourier feature approximation. Combined with a tailored reparameterization trick, this approximation enables scalable variational inference for both the model and the unified latent representations. Numerical evaluations across a diverse range of multi-view datasets demonstrate that our proposed method consistently outperforms state-of-the-art models in learning meaningful latent representations.
- Abstract(参考訳): マルチビューガウスプロセス潜在変数モデル(MV-GPLVM)は,マルチビューデータから統一表現を学習することを目的としている。
これらの問題を克服するために、まずスペクトル密度とカーネル関数の新たな双対性を導入する。
スペクトル密度を二変量ガウス混合でモデル化することにより、MV-GPLVMに対してNext-Gen Spectral Mixture (NG-SM)と呼ばれる汎用的で表現力のあるカーネルを導出する。
NG-SMカーネルの計算非効率性に対処するため,ランダムなフーリエ特徴近似を提案する。
この近似は、調整された再パラメータ化トリックと組み合わせて、モデルと統一された潜在表現の両方に対してスケーラブルな変動推論を可能にする。
多様な多視点データセットの数値評価により,提案手法は有意な潜在表現の学習において,常に最先端のモデルよりも優れていることを示す。
関連論文リスト
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
本研究では,これらの問題に対処するために,Annealed Importance Smpling (AIS)アプローチを提案する。
シークエンシャルモンテカルロサンプリング器とVIの強度を組み合わせることで、より広い範囲の後方分布を探索し、徐々にターゲット分布に接近する。
実験結果から,本手法はより厳密な変動境界,高い対数類似度,より堅牢な収束率で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-08-13T08:09:05Z) - Preventing Model Collapse in Gaussian Process Latent Variable Models [11.45681373843122]
本稿では,線形フーリエVMのレンズによるモデル崩壊に対する射影分散の影響を理論的に検討する。
我々は、スペクトル混合(SM)カーネルと微分可能乱数特徴(RFF)カーネル近似を統合することにより、カーネルの柔軟性が不十分なため、モデル崩壊に取り組む。
提案したVMは、アドバイスRFLVMと呼ばれ、さまざまなデータセットで評価され、さまざまな競合モデルよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-04-02T06:58:41Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
文脈決定プロセス(CMDP)は、遷移カーネルと報酬関数がコンテキスト変数によってインデックス付けされた異なるMDPで時間とともに変化できる強化学習のクラスを記述する。
CMDPは、時間とともに変化する環境で多くの現実世界のアプリケーションをモデル化するための重要なフレームワークとして機能する。
CMDPを2つの線形関数近似モデルで検討する: 文脈変化表現とすべての文脈に対する共通線形重み付きモデルIと、すべての文脈に対する共通表現と文脈変化線形重み付きモデルIIである。
論文 参考訳(メタデータ) (2024-02-05T03:25:04Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - GFlowNet-EM for learning compositional latent variable models [115.96660869630227]
ラテントの後方のモデリングにおける重要なトレードオフは、表現性とトラクタブルな最適化の間にある。
非正規化密度からサンプリングするアルゴリズムであるGFlowNetsを提案する。
GFlowNetsをトレーニングして、後部から潜伏者へのサンプルをトレーニングすることにより、それらの強度をアモータライズされた変分アルゴリズムとして活用する。
論文 参考訳(メタデータ) (2023-02-13T18:24:21Z) - Tensor-based Multi-view Spectral Clustering via Shared Latent Space [14.470859959783995]
MvSC(Multi-view Spectral Clustering)は多様なデータソースによって注目を集めている。
MvSCの新しい手法はRestricted Kernel Machineフレームワークから共有潜在空間を介して提案される。
論文 参考訳(メタデータ) (2022-07-23T17:30:54Z) - Generalised Gaussian Process Latent Variable Models (GPLVM) with
Stochastic Variational Inference [9.468270453795409]
ミニバッチ学習が可能なBayesianVMモデルの2倍の定式化について検討する。
このフレームワークが、異なる潜在変数の定式化とどのように互換性を持つかを示し、モデルの組を比較する実験を行う。
我々は、膨大な量の欠落データの存在下でのトレーニングと、高忠実度再構築の実施を実証する。
論文 参考訳(メタデータ) (2022-02-25T21:21:51Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。