論文の概要: Deontic Paradoxes in ASP with Weak Constraints
- arxiv url: http://arxiv.org/abs/2308.15870v1
- Date: Wed, 30 Aug 2023 08:56:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-31 14:13:55.817923
- Title: Deontic Paradoxes in ASP with Weak Constraints
- Title(参考訳): 弱制約を持つASPにおけるDeontic Paradoxs
- Authors: Christian Hatschka (TU Vienna), Agata Ciabattoni (TU Vienna), Thomas
Eiter (TU Vienna)
- Abstract要約: 弱い制約を利用して、よく知られたデオンのパラドックスをエンコードし、解決する方法を示す。
本稿では,制約の弱いASPにおける規範的システムを翻訳する手法を提案する。
この手法はパックマンの「倫理的」バージョンに適用され、関連する作品と同等のパフォーマンスを得るが、倫理的に好ましい結果を得る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of powerful AI technology for a range of applications that are
sensitive to legal, social, and ethical norms demands decision-making support
in presence of norms and regulations. Normative reasoning is the realm of
deontic logics, that are challenged by well-known benchmark problems (deontic
paradoxes), and lack efficient computational tools. In this paper, we use
Answer Set Programming (ASP) for addressing these shortcomings and showcase how
to encode and resolve several well-known deontic paradoxes utilizing weak
constraints. By abstracting and generalizing this encoding, we present a
methodology for translating normative systems in ASP with weak constraints.
This methodology is applied to "ethical" versions of Pac-man, where we obtain a
comparable performance with related works, but ethically preferable results.
- Abstract(参考訳): 法、社会的、倫理的な規範に敏感な幅広いアプリケーションに対する強力なAI技術の台頭は、規範や規則の存在下で意思決定支援を要求する。
規範的推論はデオン論理の領域であり、よく知られたベンチマーク問題(デオン的パラドックス)に挑戦され、効率的な計算ツールがない。
本稿では、これらの欠点に対処するためにAnswer Set Programming(ASP)を使用し、弱い制約を利用してよく知られたデオンのパラドックスをエンコードし解決する方法を示す。
このエンコーディングを抽象化し、一般化することにより、ASPにおける規範的システムを弱い制約で翻訳する手法を提案する。
この手法はパックマンの「倫理的」バージョンに適用され、関連する作品と同等のパフォーマンスを得るが、倫理的に好ましい結果を得る。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Ethical and Scalable Automation: A Governance and Compliance Framework for Business Applications [0.0]
本稿では、AIが倫理的で、制御可能で、実行可能で、望ましいものであることを保証するフレームワークを紹介する。
異なるケーススタディは、学術と実践の両方の環境でAIを統合することで、このフレームワークを検証する。
論文 参考訳(メタデータ) (2024-09-25T12:39:28Z) - Normative Requirements Operationalization with Large Language Models [3.456725053685842]
規範的な非機能要件は、社会的、法的、倫理的、共感的、文化的規範の違反を避けるために、システムが観察しなければならない制約を規定する。
近年の研究では、規範的要件を特定するためにドメイン固有言語を使用してこの問題に対処している。
本稿では,システム機能の抽象表現間の意味的関係を抽出するために,大規模言語モデルを用いた補完的アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-18T17:01:34Z) - Automated legal reasoning with discretion to act using s(LAW) [0.294944680995069]
倫理的および法的懸念は、自動化された推論者が人間の理解可能な言葉で正当化する必要がある。
パターンのセットに従って曖昧な概念をモデル化するために、ASPを述語するためのトップダウン実行モデルであるs(CASP)を使うことを提案する。
我々は、s(LAW)と呼ばれるフレームワークを実装して、適用可能な法律をモデル化、理由付け、正当化し、代表的なユースケースを翻訳(およびベンチマーク)することでそれを検証しました。
論文 参考訳(メタデータ) (2024-01-25T21:11:08Z) - Social, Legal, Ethical, Empathetic, and Cultural Rules: Compilation and Reasoning (Extended Version) [8.425874385897831]
SLEEC(社会的、法的、倫理的、共感的、文化的)ルールは、AIベースの自律システムが従うべき規則の定式化、検証、実施を促進することを目的としている。
AIシステムで効果的な使用を可能にするためには、これらのルールを自動推論をサポートする形式言語に体系的に翻訳する必要がある。
本研究ではまず,SLEEC規則の古典論理への翻訳を正当化するSLEEC規則パターンの言語学的解析を行う。
論文 参考訳(メタデータ) (2023-12-15T11:23:49Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
CoT(Chain-of- Thought)は、言語モデルのプロンプトとして、推論タスク全体で素晴らしいパフォーマンスを示す。
そこで本稿では,大規模言語モデルの推論プロセスを自動的にガイドする,新たなプロンプト手法であるアナログプロンプトを導入する。
論文 参考訳(メタデータ) (2023-10-03T00:57:26Z) - Toward Unified Controllable Text Generation via Regular Expression
Instruction [56.68753672187368]
本稿では,正規表現の利点をフル活用し,多様な制約を一様にモデル化する命令ベース機構を用いた正規表現指導(REI)を提案する。
提案手法では,中規模言語モデルの微調整や,大規模言語モデルでの少数ショット・インコンテクスト学習のみを要し,各種制約の組み合わせに適用した場合のさらなる調整は不要である。
論文 参考訳(メタデータ) (2023-09-19T09:05:14Z) - On Regularization and Inference with Label Constraints [62.60903248392479]
機械学習パイプラインにおけるラベル制約を符号化するための2つの戦略、制約付き正規化、制約付き推論を比較した。
正規化については、制約に不整合なモデルを前置することで一般化ギャップを狭めることを示す。
制約付き推論では、モデルの違反を訂正することで人口リスクを低減し、それによってその違反を有利にすることを示す。
論文 参考訳(メタデータ) (2023-07-08T03:39:22Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Reinforcement Learning Guided by Provable Normative Compliance [0.0]
強化学習(Reinforcement Learning, RL)は、自律エージェントの安全、倫理、法的行動のためのツールとして約束されている。
我々は多目的RL(MORL)を用いて、侵害を避けるという倫理的目的と非倫理的目的とのバランスをとる。
提案手法は,MORL手法の多重性に有効であることを示すとともに,割り当てる刑罰の規模に関係なく有効であることを示す。
論文 参考訳(メタデータ) (2022-03-30T13:10:55Z) - Probably Approximately Correct Constrained Learning [135.48447120228658]
我々は、ほぼ正しい学習フレームワーク(PAC)に基づく一般化理論を開発する。
PAC学習可能なクラスも制約のある学習者であるという意味では,学習者の導入は学習問題を難しくするものではないことを示す。
このソリューションの特性を分析し,制約付き学習が公平でロバストな分類における問題にどのように対処できるかを説明する。
論文 参考訳(メタデータ) (2020-06-09T19:59:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。