論文の概要: Understanding ProbLog as Probabilistic Argumentation
- arxiv url: http://arxiv.org/abs/2308.15891v1
- Date: Wed, 30 Aug 2023 09:05:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-31 14:04:18.602087
- Title: Understanding ProbLog as Probabilistic Argumentation
- Title(参考訳): ProbLogを確率的議論として理解する
- Authors: Francesca Toni (Department of Computing, Imperial College London, UK),
Nico Potyka (Department of Computing, Imperial College London, UK), Markus
Ulbricht (Department of Computer Science, Leipzig University, Germany),
Pietro Totis (Department of Computer Science, KU Leuven, Belgium)
- Abstract要約: ProbLogは、ABA(Access-Based Argumentation)に基づく確率的抽象論(PAA)の一形態の例であることを示す。
接続は、代替のセマンティクスでProbLogを装備する道を開く。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: ProbLog is a popular probabilistic logic programming language/tool, widely
used for applications requiring to deal with inherent uncertainties in
structured domains. In this paper we study connections between ProbLog and a
variant of another well-known formalism combining symbolic reasoning and
reasoning under uncertainty, i.e. probabilistic argumentation. Specifically, we
show that ProbLog is an instance of a form of Probabilistic Abstract
Argumentation (PAA) that builds upon Assumption-Based Argumentation (ABA). The
connections pave the way towards equipping ProbLog with alternative semantics,
inherited from PAA/PABA, as well as obtaining novel argumentation semantics for
PAA/PABA, leveraging on prior connections between ProbLog and argumentation.
Further, the connections pave the way towards novel forms of argumentative
explanations for ProbLog's outputs.
- Abstract(参考訳): ProbLogは、構造化ドメインの固有の不確実性を扱う必要があるアプリケーションに広く使われている確率論的論理型言語/ツールである。
本稿では,ProbLogと記号的推論と不確実性の下での推論を組み合わせた他のよく知られた形式主義の変種との関係,すなわち確率的議論について検討する。
具体的には、ProbLogは、ABA(Assumption-Based Argumentation)に基づく確率的抽象論(PAA)の例であることを示す。
これらの接続は、PAA/PABAから継承された代替セマンティクスとProbLogの装備方法と、PAA/PABAのための新しい議論セマンティクスを取得し、ProbLogと引数の間の以前の接続を活用する。
さらに、この接続はProbLogの出力に対する議論的説明の新しい形式への道を開く。
関連論文リスト
- Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation [110.71955853831707]
我々は、LMを、事前学習時に見られる間接的推論経路を集約することで、新たな結論を導出すると考えている。
我々は、推論経路を知識/推論グラフ上のランダムウォークパスとして定式化する。
複数のKGおよびCoTデータセットの実験と分析により、ランダムウォークパスに対するトレーニングの効果が明らかにされた。
論文 参考訳(メタデータ) (2024-02-05T18:25:51Z) - CASA: Causality-driven Argument Sufficiency Assessment [79.13496878681309]
ゼロショット因果関係に基づく議論十分性評価フレームワークであるCASAを提案する。
PSは前提イベントの導入が前提イベントと結論イベントの両方が欠落した場合の結論につながる可能性を測っている。
2つの論理的誤り検出データセットの実験により、CASAは不十分な議論を正確に識別することを示した。
論文 参考訳(メタデータ) (2024-01-10T16:21:18Z) - "What if?" in Probabilistic Logic Programming [2.9005223064604078]
ProbLogプログラムは、特定の確率でのみ保持される事実を持つ論理プログラムである。
クエリに答えることによって、このProbLog言語を拡張します。
論文 参考訳(メタデータ) (2023-05-24T16:35:24Z) - smProbLog: Stable Model Semantics in ProbLog for Probabilistic
Argumentation [19.46250467634934]
本稿では,確率論的論理プログラミング(PLP)のセマンティクスにおいて,確率論的議論フレームワークを表すプログラムが共通の仮定を満たさないことを示す。
第二の貢献は、確率的事実の選択が論理的原子の真理割り当てを一意に決定しないプログラムのための新しいPLP意味論である。
3つ目のコントリビューションは、このセマンティクスをサポートするPLPシステムの実装である。
論文 参考訳(メタデータ) (2023-04-03T10:59:25Z) - Machine Learning with Probabilistic Law Discovery: A Concise
Introduction [77.34726150561087]
Probabilistic Law Discovery (PLD) は、確率論的ルール学習の変種を実装した論理ベースの機械学習手法である。
PLDはDecision Tree/Random Forestメソッドに近いが、関連するルールの定義方法に大きく異なる。
本稿はPLDの主な原則を概説し、その利点と限界を強調し、いくつかのアプリケーションガイドラインを提供する。
論文 参考訳(メタデータ) (2022-12-22T17:40:13Z) - Probabilistic Deduction: an Approach to Probabilistic Structured
Argumentation [1.027974860479791]
確率的推論(英: Probabilistic Deduction、PD)は確率的構造的議論に対するアプローチである。
PDは確率論的推論と議論的推論を統一するフレームワークを提供する。
これは、結合分布が外部ソースとして仮定されない確率的構造化議論における最初の研究である。
論文 参考訳(メタデータ) (2022-09-01T03:58:38Z) - The intersection probability: betting with probability intervals [7.655239948659381]
本稿では,不確実性に対する幾何学的アプローチの枠組みにおいて,元来は信念関数に導かれる変換である交叉確率の利用を提案する。
本稿では,確率区間に関する意思決定の枠組みについて概説する。
論文 参考訳(メタデータ) (2022-01-05T17:35:06Z) - SMProbLog: Stable Model Semantics in ProbLog and its Applications in
Argumentation [17.71804768917815]
SMProbLogは確率論理プログラミング言語ProbLogの一般化である。
本稿では,SMProbLogを用いて確率論的議論問題を解き明かす方法について述べる。
論文 参考訳(メタデータ) (2021-10-05T12:29:22Z) - Logical Credal Networks [87.25387518070411]
本稿では,論理と確率を組み合わせた先行モデルの多くを一般化した表現的確率論的論理である論理的クレダルネットワークを紹介する。
本稿では,不確実性のあるマスターミンドゲームを解くこと,クレジットカード詐欺を検出することを含む,最大後部推論タスクの性能について検討する。
論文 参考訳(メタデータ) (2021-09-25T00:00:47Z) - Tractable Inference in Credal Sentential Decision Diagrams [116.6516175350871]
確率感性決定図は、解離ゲートの入力が確率値によってアノテートされる論理回路である。
我々は、局所確率を質量関数のクレーダル集合に置き換えることができる確率の一般化である、クレーダル感性決定図を開発する。
まず,ノイズの多い7セグメント表示画像に基づく簡単なアプリケーションについて検討する。
論文 参考訳(メタデータ) (2020-08-19T16:04:34Z) - Contextuality scenarios arising from networks of stochastic processes [68.8204255655161]
経験的モデルは、その分布が X 上の合同分布を極小化することができなければ文脈的と言える。
我々は、多くのプロセス間の相互作用という、文脈的経験的モデルの異なる古典的な源泉を示す。
長期にわたるネットワークの統計的挙動は、経験的モデルを一般的な文脈的かつ強い文脈的にする。
論文 参考訳(メタデータ) (2020-06-22T16:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。