More quantum chemistry with fewer qubits
- URL: http://arxiv.org/abs/2308.16873v4
- Date: Sun, 03 Nov 2024 21:22:29 GMT
- Title: More quantum chemistry with fewer qubits
- Authors: Jakob Günther, Alberto Baiardi, Markus Reiher, Matthias Christandl,
- Abstract summary: We propose a quantum algorithm that improves on the representation of the physical problem by virtue of second-order perturbation theory.
In particular, our quantum algorithm evaluates the second-order energy correction through a series of time-evolution steps under the unperturbed Hamiltonian.
Our perturbation theory quantum algorithm can also be applied to symmetry-adapted perturbation theory.
- Score: 0.9903198600681908
- License:
- Abstract: Quantum computation is one of the most promising new paradigms for the simulation of physical systems composed of electrons and atomic nuclei, with applications in chemistry, solid-state physics, materials science, and molecular biology. This requires a truncated representation of the electronic structure Hamiltonian using a finite number of orbitals. While it is, in principle, obvious how to improve on the representation by including more orbitals, this is usually unfeasible in practice (e.g., because of the limited number of qubits available) and severely compromises the accuracy of the obtained results. Here, we propose a quantum algorithm that improves on the representation of the physical problem by virtue of second-order perturbation theory. In particular, our quantum algorithm evaluates the second-order energy correction through a series of time-evolution steps under the unperturbed Hamiltonian. An important application is to go beyond the active-space approximation, allowing to include corrections of virtual orbitals, known as multireference perturbation theory. Here, we exploit that the unperturbed Hamiltonian is diagonal for virtual orbitals and show that the number of qubits is independent of the number of virtual orbitals. This gives rise to more accurate energy estimates without increasing the number of qubits. Moreover, we demonstrate numerically for realistic chemical systems that the total runtime has highly favorable scaling in the number of virtual orbitals compared to previous work. Numerical calculations confirm the necessity of the multireference perturbation theory energy corrections to reach accurate ground state energy estimates. Our perturbation theory quantum algorithm can also be applied to symmetry-adapted perturbation theory. As such, we demonstrate that perturbation theory can help to reduce the quantum hardware requirements for quantum chemistry.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Exhaustive search for optimal molecular geometries using imaginary-time
evolution on a quantum computer [0.0]
We propose a nonvariational scheme for geometry optimization of molecules for the first-quantized eigensolver.
We encode both electronic states and candidate molecular geometries as a superposition of many-qubit states.
We show that the circuit depth scales as O (n_e2 poly(log n_e)) for the electron number n_e, which can be reduced to O (n_e poly(log n_e)) if extra O (n_e log n_e) qubits are available.
arXiv Detail & Related papers (2022-10-18T14:18:20Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Atom-Orbital Qubits under Holonomic Quantum Control [3.6137239960677268]
We construct atom-orbital qubits by manipulating $s$- and $d$-orbitals of atomic Bose-Einstein condensation in an optical lattice.
Noise-resilient quantum gate operations are achieved by performing holonomic quantum control.
Our work opens up wide opportunities for atom-orbital based quantum information processing.
arXiv Detail & Related papers (2021-04-18T10:03:11Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Quantum simulations of molecular systems with intrinsic atomic orbitals [0.0]
We explore the use of intrinsic atomic orbitals (IAOs) in quantum simulations of molecules.
We investigate ground-state energies and one- and two-body density operators in the framework of the variational quantum eigensolver.
We also demonstrate the use of this approach in the calculation of ground- and excited-states energies of small molecules.
arXiv Detail & Related papers (2020-11-16T18:01:44Z) - A state-averaged orbital-optimized hybrid quantum-classical algorithm
for a democratic description of ground and excited states [0.0]
In the Noisy Intermediate-Scale Quantum (NISQ) era, solving the electronic structure problem from chemistry is considered as the "killer application"
We introduce a method called "State-Averaged Orbital-d Variationalsolver" (SA-OO-VQE) which combines two algorithms.
We show that merging both algorithms fulfil the necessary condition to describe the molecule's conical intersection.
arXiv Detail & Related papers (2020-09-23T23:27:51Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Quantum Simulation of Quantum Field Theory in the Light-Front
Formulation [0.0]
Quantum chromodynamics (QCD) describes the structure of hadrons such as the proton at a fundamental level.
Uncertainty in the parton distribution function is the dominant source of error in the $W$ mass measurement at the LHC.
We show how this can be achieved by using the light-front formulation of quantum field theory.
arXiv Detail & Related papers (2020-02-10T18:43:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.