A multinode quantum network over a metropolitan area
- URL: http://arxiv.org/abs/2309.00221v1
- Date: Fri, 1 Sep 2023 02:49:19 GMT
- Title: A multinode quantum network over a metropolitan area
- Authors: Jian-Long Liu, Xi-Yu Luo, Yong Yu, Chao-Yang Wang, Bin Wang, Yi Hu,
Jun Li, Ming-Yang Zheng, Bo Yao, Zi Yan, Da Teng, Jin-Wei Jiang, Xiao-Bing
Liu, Xiu-Ping Xie, Jun Zhang, Qing-He Mao, Xiao Jiang, Qiang Zhang, Xiao-Hui
Bao, Jian-Wei Pan
- Abstract summary: We report on the debut implementation of a multi-node entanglement-based quantum network over a metropolitan area.
We demonstrated heralded entanglement generation between two quantum nodes situated 12.5 km apart.
Our work provides a metropolitan-scale testbed for the evaluation and exploration of multi-node quantum network protocols.
- Score: 24.45740554967777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Towards realizing the future quantum internet, a pivotal milestone entails
the transition from two-node proof-of-principle experiments conducted in
laboratories to comprehensive, multi-node setups on large scales. Here, we
report on the debut implementation of a multi-node entanglement-based quantum
network over a metropolitan area. We equipped three quantum nodes with atomic
quantum memories and their telecom interfaces, and combined them into a
scalable phase-stabilized architecture through a server node. We demonstrated
heralded entanglement generation between two quantum nodes situated 12.5 km
apart, and the storage of entanglement exceeding the round-trip communication
time. We also showed the concurrent entanglement generation on three links. Our
work provides a metropolitan-scale testbed for the evaluation and exploration
of multi-node quantum network protocols and starts a new stage of quantum
internet research.
Related papers
- Entanglement distribution based on quantum walk in arbitrary quantum networks [6.37705397840332]
We develop a series of scheme for generating high-dimensional entangled states via quantum walks with multiple coins or single coin.
We also give entanglement distribution schemes on arbitrary quantum networks according to the above theoretical framework.
Our work can serve as a building block for constructing larger and more complex quantum networks.
arXiv Detail & Related papers (2024-07-05T08:26:41Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Nonlocal photonic quantum gates over 7.0 km [5.545769900845797]
We demonstrate nonlocal photonic quantum gates between two nodes spatially separated by 7.0 km.
Results are a proof-of-principle demonstration of quantum gates over metropolitan-scale distances.
arXiv Detail & Related papers (2023-07-28T15:49:00Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Towards real-world quantum networks: a review [3.454055792111304]
Quantum networks play an extremely important role in quantum information science.
One of the key challenges for implementing a quantum network is to distribute entangled flying qubits to spatially separated nodes.
Dedicated efforts around the world for more than twenty years have resulted in both major theoretical and experimental progress towards entangling quantum nodes.
arXiv Detail & Related papers (2022-01-13T05:53:13Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Realizing quantum nodes in space for cost-effective, global quantum
communication: in-orbit results and next steps [94.08853042978113]
SpooQy-1 is a satellite developed at the Centre for Quantum Technologies.
It has successfully demonstrated the operation of an entangled photon pair source on a resource-constrained CubeSat platform.
arXiv Detail & Related papers (2021-04-22T02:59:23Z) - Realization of a multi-node quantum network of remote solid-state qubits [0.45823749779393547]
We report on the experimental realization of a three-node entanglement-based quantum network.
We achieve real-time communication and feed-forward gate operations across the network.
We capitalize on the novel capabilities of this network to realize two canonical protocols without post-selection.
arXiv Detail & Related papers (2021-02-08T19:00:03Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.