Large Process Models: A Vision for Business Process Management in the Age of Generative AI
- URL: http://arxiv.org/abs/2309.00900v3
- Date: Fri, 17 Jan 2025 11:18:37 GMT
- Title: Large Process Models: A Vision for Business Process Management in the Age of Generative AI
- Authors: Timotheus Kampik, Christian Warmuth, Adrian Rebmann, Ron Agam, Lukas N. P. Egger, Andreas Gerber, Johannes Hoffart, Jonas Kolk, Philipp Herzig, Gero Decker, Han van der Aa, Artem Polyvyanyy, Stefanie Rinderle-Ma, Ingo Weber, Matthias Weidlich,
- Abstract summary: Large Process Model (LPM) combines correlation power of Large Language Models with analytical precision and reliability of knowledge-based systems and automated reasoning approaches.
LPM would allow organizations to receive context-specific (tailored) process and other business models, analytical deep-dives, and improvement recommendations.
- Score: 4.1636123511446055
- License:
- Abstract: The continued success of Large Language Models (LLMs) and other generative artificial intelligence approaches highlights the advantages that large information corpora can have over rigidly defined symbolic models, but also serves as a proof-point of the challenges that purely statistics-based approaches have in terms of safety and trustworthiness. As a framework for contextualizing the potential, as well as the limitations of LLMs and other foundation model-based technologies, we propose the concept of a Large Process Model (LPM) that combines the correlation power of LLMs with the analytical precision and reliability of knowledge-based systems and automated reasoning approaches. LPMs are envisioned to directly utilize the wealth of process management experience that experts have accumulated, as well as process performance data of organizations with diverse characteristics, e.g.,\ regarding size, region, or industry. In this vision, the proposed LPM would allow organizations to receive context-specific (tailored) process and other business models, analytical deep-dives, and improvement recommendations. As such, they would allow to substantially decrease the time and effort required for business transformation, while also allowing for deeper, more impactful, and more actionable insights than previously possible. We argue that implementing an LPM is feasible, but also highlight limitations and research challenges that need to be solved to implement particular aspects of the LPM vision.
Related papers
- Applying Large Language Models in Knowledge Graph-based Enterprise Modeling: Challenges and Opportunities [0.0]
Large language models (LLMs) in enterprise modeling have recently started to shift from academic research to that of industrial applications.
In this paper we employ a knowledge graph-based approach for enterprise modeling and investigate the potential benefits of LLMs.
arXiv Detail & Related papers (2025-01-07T06:34:17Z) - Benchmarking Large and Small MLLMs [71.78055760441256]
Large multimodal language models (MLLMs) have achieved remarkable advancements in understanding and generating multimodal content.
However, their deployment faces significant challenges, including slow inference, high computational cost, and impracticality for on-device applications.
Small MLLMs, exemplified by the LLava-series models and Phi-3-Vision, offer promising alternatives with faster inference, reduced deployment costs, and the ability to handle domain-specific scenarios.
arXiv Detail & Related papers (2025-01-04T07:44:49Z) - Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models [64.1799100754406]
Large Language Models (LLMs) demonstrate enhanced capabilities and reliability by reasoning more.
Despite various efforts to improve LLM reasoning, high-quality long-chain reasoning data and optimized training pipelines still remain inadequately explored in vision-language tasks.
We present Insight-V, an early effort to 1) scalably produce long and robust reasoning data for complex multi-modal tasks, and 2) an effective training pipeline to enhance the reasoning capabilities of MLLMs.
arXiv Detail & Related papers (2024-11-21T18:59:55Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
Large language models (LLMs) have achieved remarkable performance in language understanding and generation tasks.
This paper thoroughly examines the usefulness and readiness of LLMs for business processes.
arXiv Detail & Related papers (2024-06-09T02:36:00Z) - Hybrid LLM/Rule-based Approaches to Business Insights Generation from Structured Data [0.0]
The ability to extract actionable insights from vast and varied datasets is essential for informed decision-making and maintaining a competitive edge.
Traditional rule-based systems, while reliable, often fall short when faced with the complexity and dynamism of modern business data.
This paper explores the efficacy of hybrid approaches that integrate the robustness of rule-based systems with the adaptive power of Large Language Models.
arXiv Detail & Related papers (2024-04-24T02:42:24Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
This paper investigates whether the pattern recognition and sequence modeling capabilities of LLMs can be extended to the domain of knowledge tracing.
We compare two approaches to using LLMs for this task, zero-shot prompting and model fine-tuning, with existing, non-LLM approaches to knowledge tracing.
While LLM-based approaches do not achieve state-of-the-art performance, fine-tuned LLMs surpass the performance of naive baseline models and perform on par with standard Bayesian Knowledge Tracing approaches.
arXiv Detail & Related papers (2024-02-29T14:06:34Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)
This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
Agent-based models (ABMs) stand as an essential paradigm for proposing and validating hypothetical solutions or policies.
Large language models (LLMs) encapsulating cross-domain knowledge and programming proficiency could potentially alleviate the difficulty of this process.
We present SAGE, a general solution-oriented ABM generation framework designed for automatic modeling and generating solutions for targeted problems.
arXiv Detail & Related papers (2024-02-04T07:59:06Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.