Gaussian Splatting Under Attack: Investigating Adversarial Noise in 3D Objects
- URL: http://arxiv.org/abs/2412.02803v1
- Date: Tue, 03 Dec 2024 20:11:21 GMT
- Title: Gaussian Splatting Under Attack: Investigating Adversarial Noise in 3D Objects
- Authors: Abdurrahman Zeybey, Mehmet Ergezer, Tommy Nguyen,
- Abstract summary: adversarial attacks on object detection models are well-studied for 2D images, but impact on 3D models remains underexplored.
This work introduces the Masked Iterative Fast Gradient Sign Method (M-IFGSM), designed to generate adversarial noise targeting the CLIP vision-language model.
We demonstrate that our method effectively reduces the accuracy and confidence of the model, with adversarial noise being nearly imperceptible to human observers.
- Score: 1.7205106391379021
- License:
- Abstract: 3D Gaussian Splatting has advanced radiance field reconstruction, enabling high-quality view synthesis and fast rendering in 3D modeling. While adversarial attacks on object detection models are well-studied for 2D images, their impact on 3D models remains underexplored. This work introduces the Masked Iterative Fast Gradient Sign Method (M-IFGSM), designed to generate adversarial noise targeting the CLIP vision-language model. M-IFGSM specifically alters the object of interest by focusing perturbations on masked regions, degrading the performance of CLIP's zero-shot object detection capability when applied to 3D models. Using eight objects from the Common Objects 3D (CO3D) dataset, we demonstrate that our method effectively reduces the accuracy and confidence of the model, with adversarial noise being nearly imperceptible to human observers. The top-1 accuracy in original model renders drops from 95.4\% to 12.5\% for train images and from 91.2\% to 35.4\% for test images, with confidence levels reflecting this shift from true classification to misclassification, underscoring the risks of adversarial attacks on 3D models in applications such as autonomous driving, robotics, and surveillance. The significance of this research lies in its potential to expose vulnerabilities in modern 3D vision models, including radiance fields, prompting the development of more robust defenses and security measures in critical real-world applications.
Related papers
- RIGI: Rectifying Image-to-3D Generation Inconsistency via Uncertainty-aware Learning [27.4552892119823]
inconsistencies in multi-view snapshots frequently introduce noise and artifacts along object boundaries, undermining the 3D reconstruction process.
We leverage 3D Gaussian Splatting (3DGS) for 3D reconstruction, and explicitly integrate uncertainty-aware learning into the reconstruction process.
We apply adaptive pixel-wise loss weighting to regularize the models, reducing reconstruction intensity in high-uncertainty regions.
arXiv Detail & Related papers (2024-11-28T02:19:28Z) - Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding [55.32861154245772]
Calib3D is a pioneering effort to benchmark and scrutinize the reliability of 3D scene understanding models.
We comprehensively evaluate 28 state-of-the-art models across 10 diverse 3D datasets.
We introduce DeptS, a novel depth-aware scaling approach aimed at enhancing 3D model calibration.
arXiv Detail & Related papers (2024-03-25T17:59:59Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models [59.13757801286343]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce the FILP-3D framework with two novel components: the Redundant Feature Eliminator (RFE) for feature space misalignment and the Spatial Noise Compensator (SNC) for significant noise.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - AdvMono3D: Advanced Monocular 3D Object Detection with Depth-Aware
Robust Adversarial Training [64.14759275211115]
We propose a depth-aware robust adversarial training method for monocular 3D object detection, dubbed DART3D.
Our adversarial training approach capitalizes on the inherent uncertainty, enabling the model to significantly improve its robustness against adversarial attacks.
arXiv Detail & Related papers (2023-09-03T07:05:32Z) - Shape-Aware Monocular 3D Object Detection [15.693199934120077]
A single-stage monocular 3D object detection model is proposed.
The detection largely avoids interference from irrelevant regions surrounding the target objects.
A novel evaluation metric, namely average depth similarity (ADS) is proposed for the monocular 3D object detection models.
arXiv Detail & Related papers (2022-04-19T07:43:56Z) - PONet: Robust 3D Human Pose Estimation via Learning Orientations Only [116.1502793612437]
We propose a novel Pose Orientation Net (PONet) that is able to robustly estimate 3D pose by learning orientations only.
PONet estimates the 3D orientation of these limbs by taking advantage of the local image evidence to recover the 3D pose.
We evaluate our method on multiple datasets, including Human3.6M, MPII, MPI-INF-3DHP, and 3DPW.
arXiv Detail & Related papers (2021-12-21T12:48:48Z) - Geometry-aware data augmentation for monocular 3D object detection [18.67567745336633]
This paper focuses on monocular 3D object detection, one of the essential modules in autonomous driving systems.
A key challenge is that the depth recovery problem is ill-posed in monocular data.
We conduct a thorough analysis to reveal how existing methods fail to robustly estimate depth when different geometry shifts occur.
We convert the aforementioned manipulations into four corresponding 3D-aware data augmentation techniques.
arXiv Detail & Related papers (2021-04-12T23:12:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.