Advances in machine-learning-based sampling motivated by lattice quantum
chromodynamics
- URL: http://arxiv.org/abs/2309.01156v1
- Date: Sun, 3 Sep 2023 12:25:59 GMT
- Title: Advances in machine-learning-based sampling motivated by lattice quantum
chromodynamics
- Authors: Kyle Cranmer, Gurtej Kanwar, S\'ebastien Racani\`ere, Danilo J.
Rezende, Phiala E. Shanahan
- Abstract summary: This Perspective outlines the advances in ML-based sampling motivated by lattice quantum field theory.
The design of ML algorithms for this application faces profound challenges, including the necessity of scaling custom ML architectures to the largest supercomputers.
If this approach can realize its early promise it will be a transformative step towards first-principles physics calculations in particle, nuclear and condensed matter physics.
- Score: 4.539861642583362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sampling from known probability distributions is a ubiquitous task in
computational science, underlying calculations in domains from linguistics to
biology and physics. Generative machine-learning (ML) models have emerged as a
promising tool in this space, building on the success of this approach in
applications such as image, text, and audio generation. Often, however,
generative tasks in scientific domains have unique structures and features --
such as complex symmetries and the requirement of exactness guarantees -- that
present both challenges and opportunities for ML. This Perspective outlines the
advances in ML-based sampling motivated by lattice quantum field theory, in
particular for the theory of quantum chromodynamics. Enabling calculations of
the structure and interactions of matter from our most fundamental
understanding of particle physics, lattice quantum chromodynamics is one of the
main consumers of open-science supercomputing worldwide. The design of ML
algorithms for this application faces profound challenges, including the
necessity of scaling custom ML architectures to the largest supercomputers, but
also promises immense benefits, and is spurring a wave of development in
ML-based sampling more broadly. In lattice field theory, if this approach can
realize its early promise it will be a transformative step towards
first-principles physics calculations in particle, nuclear and condensed matter
physics that are intractable with traditional approaches.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
We explore the synergistic fusion of classical and quantum computing paradigms within the realm of Generative Adversarial Networks (GANs)
Our objective is to seamlessly integrate quantum computational elements into the conventional GAN architecture, thereby unlocking novel pathways for enhanced training processes.
This research is positioned at the forefront of quantum-enhanced machine learning, presenting a critical stride towards harnessing the computational power of quantum systems.
arXiv Detail & Related papers (2023-12-15T16:51:36Z) - Programmable Simulations of Molecules and Materials with Reconfigurable
Quantum Processors [0.3320294284424914]
We introduce a simulation framework for strongly correlated quantum systems that can be represented by model spin Hamiltonians.
Our approach leverages reconfigurable qubit architectures to programmably simulate real-time dynamics.
We show how this method can be used to compute key properties of a polynuclear transition-metal catalyst and 2D magnetic materials.
arXiv Detail & Related papers (2023-12-04T19:00:01Z) - Symmetry-invariant quantum machine learning force fields [0.0]
We design quantum neural networks that explicitly incorporate, as a data-inspired prior, an extensive set of physically relevant symmetries.
Our results suggest that molecular force fields generation can significantly profit from leveraging the framework of geometric quantum machine learning.
arXiv Detail & Related papers (2023-11-19T16:15:53Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Scalable Quantum Computation of Highly Excited Eigenstates with Spectral
Transforms [0.76146285961466]
We use the HHL algorithm to prepare excited interior eigenstates of physical Hamiltonians in a variational and targeted manner.
This is enabled by the efficient computation of the expectation values of inverse Hamiltonians on quantum computers.
We detail implementations of this scheme for both fault-tolerant and near-term quantum computers.
arXiv Detail & Related papers (2023-02-13T19:01:02Z) - Explainable Quantum Machine Learning [0.7046417074932257]
Methods of artificial intelligence (AI) and especially machine learning (ML) have been growing ever more complex.
In parallel, quantum machine learning (QML) is emerging with the ongoing improvement of quantum computing hardware.
arXiv Detail & Related papers (2023-01-22T15:17:12Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.