Physics-Driven Learning for Inverse Problems in Quantum Chromodynamics
- URL: http://arxiv.org/abs/2501.05580v1
- Date: Thu, 09 Jan 2025 21:14:25 GMT
- Title: Physics-Driven Learning for Inverse Problems in Quantum Chromodynamics
- Authors: Gert Aarts, Kenji Fukushima, Tetsuo Hatsuda, Andreas Ipp, Shuzhe Shi, Lingxiao Wang, Kai Zhou,
- Abstract summary: Integration of deep learning techniques and physics-driven designs is reforming the way we address inverse problems.
This perspective highlights advances and potential of physics-driven learning methods.
It is shown that the fusion of ML and physics can lead to more efficient and reliable problem-solving strategies.
- Score: 5.5371760658918
- License:
- Abstract: The integration of deep learning techniques and physics-driven designs is reforming the way we address inverse problems, in which accurate physical properties are extracted from complex data sets. This is particularly relevant for quantum chromodynamics (QCD), the theory of strong interactions, with its inherent limitations in observational data and demanding computational approaches. This perspective highlights advances and potential of physics-driven learning methods, focusing on predictions of physical quantities towards QCD physics, and drawing connections to machine learning(ML). It is shown that the fusion of ML and physics can lead to more efficient and reliable problem-solving strategies. Key ideas of ML, methodology of embedding physics priors, and generative models as inverse modelling of physical probability distributions are introduced. Specific applications cover first-principle lattice calculations, and QCD physics of hadrons, neutron stars, and heavy-ion collisions. These examples provide a structured and concise overview of how incorporating prior knowledge such as symmetry, continuity and equations into deep learning designs can address diverse inverse problems across different physical sciences.
Related papers
- Combining physics-based and data-driven models: advancing the frontiers of research with Scientific Machine Learning [3.912796219404492]
Machine learning combines physics-based and data-driven models.
With SciML, we can inject physics and mathematical knowledge into machine learning algorithms.
We discuss the great potential of a broad variety of SciML strategies in solving complex problems governed by partial differential equations.
arXiv Detail & Related papers (2025-01-30T19:09:38Z) - Physics-Informed Graph-Mesh Networks for PDEs: A hybrid approach for complex problems [0.24578723416255746]
We introduce a hybrid approach combining physics-informed graph neural networks with numerical kernels from finite elements.
After studying the theoretical properties of our model, we apply it to complex geometries, in two and three dimensions.
Our choices are supported by an ablation study, and we evaluate the generalisation capacity of the proposed approach.
arXiv Detail & Related papers (2024-09-25T07:52:29Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Advances in machine-learning-based sampling motivated by lattice quantum
chromodynamics [4.539861642583362]
This Perspective outlines the advances in ML-based sampling motivated by lattice quantum field theory.
The design of ML algorithms for this application faces profound challenges, including the necessity of scaling custom ML architectures to the largest supercomputers.
If this approach can realize its early promise it will be a transformative step towards first-principles physics calculations in particle, nuclear and condensed matter physics.
arXiv Detail & Related papers (2023-09-03T12:25:59Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - On the Integration of Physics-Based Machine Learning with Hierarchical
Bayesian Modeling Techniques [0.0]
This paper proposes to embed mechanics-based models into the mean function of a Gaussian Process (GP) model and characterize potential discrepancies through kernel machines.
The stationarity of the kernel function is a difficult hurdle in the sequential processing of long data sets, resolved through hierarchical Bayesian techniques.
Using numerical and experimental examples, potential applications of the proposed method to structural dynamics inverse problems are demonstrated.
arXiv Detail & Related papers (2023-03-01T02:29:41Z) - Physics Embedded Machine Learning for Electromagnetic Data Imaging [83.27424953663986]
Electromagnetic (EM) imaging is widely applied in sensing for security, biomedicine, geophysics, and various industries.
It is an ill-posed inverse problem whose solution is usually computationally expensive. Machine learning (ML) techniques and especially deep learning (DL) show potential in fast and accurate imaging.
This article surveys various schemes to incorporate physics in learning-based EM imaging.
arXiv Detail & Related papers (2022-07-26T02:10:15Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
In the domain of machine learning, an awareness of symmetries has driven impressive performance breakthroughs.
We argue that both the physics community and the broader machine learning community have much to understand.
arXiv Detail & Related papers (2022-03-11T18:27:04Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Encoding physics to learn reaction-diffusion processes [18.187800601192787]
We show how a deep learning framework that encodes given physics structure can be applied to a variety of problems regarding the PDE system regimes.
The resultant learning paradigm that encodes physics shows high accuracy, robustness, interpretability and generalizability demonstrated via extensive numerical experiments.
arXiv Detail & Related papers (2021-06-09T03:02:20Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.