論文の概要: Data Scaling Effect of Deep Learning in Financial Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2309.02072v4
- Date: Mon, 29 Apr 2024 09:57:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 01:04:37.865896
- Title: Data Scaling Effect of Deep Learning in Financial Time Series Forecasting
- Title(参考訳): 金融時系列予測におけるディープラーニングのデータのスケーリング効果
- Authors: Chen Liu, Minh-Ngoc Tran, Chao Wang, Richard Gerlach, Robert Kohn,
- Abstract要約: 本稿では,グローバルトレーニングの例として,株価変動予測を例に挙げる。
ボラティリティ予測のための事前訓練された基礎モデルを導入し、あらゆる株について正確なゼロショット予測を行うことができる。
- 参考スコア(独自算出の注目度): 5.299784478982814
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: For many years, researchers have been exploring the use of deep learning in the forecasting of financial time series. However, they have continued to rely on the conventional econometric approach for model optimization, optimizing the deep learning models on individual assets. In this paper, we use the stock volatility forecast as an example to illustrate global training - optimizes the deep learning model across a wide range of stocks - is both necessary and beneficial for any academic or industry practitioners who is interested in employing deep learning to forecast financial time series. Furthermore, a pre-trained foundation model for volatility forecast is introduced, capable of making accurate zero-shot forecasts for any stocks.
- Abstract(参考訳): 長年にわたり、研究者たちは金融時系列の予測においてディープラーニングの利用を探求してきた。
しかし、彼らはモデルの最適化に従来の計量的アプローチを頼り続け、個々の資産のディープラーニングモデルを最適化している。
本稿では,金融時系列の予測にディープラーニングを活用することに関心のある学術的・産業的実践者に対して,グローバルトレーニング(幅広い株式にわたるディープラーニングモデルを最適化する)の例として,ストックボラティリティ予測を用いる。
さらに、ボラティリティ予測のための事前訓練された基礎モデルを導入し、あらゆる株について正確なゼロショット予測を行うことができる。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
時系列基礎モデルはゼロショット予測に優れ、明示的なトレーニングなしで多様なタスクを処理する。
GIFT-Evalは、多様なデータセットに対する評価を促進するための先駆的なベンチマークである。
GIFT-Evalには、144,000の時系列と17700万のデータポイントの23のデータセットが含まれている。
論文 参考訳(メタデータ) (2024-10-14T11:29:38Z) - An Evaluation of Deep Learning Models for Stock Market Trend Prediction [0.3277163122167433]
本研究では,S&P 500指数とブラジルETF EWZの日時閉値を用いた短期トレンド予測のための先進的なディープラーニングモデルの有効性について検討した。
時系列予測に最適化されたxLSTM適応であるxLSTM-TSモデルを導入する。
テストされたモデルの中で、xLSTM-TSは一貫して他のモデルよりも優れており、例えば、テスト精度72.82%、F1スコア73.16%をEWZの日次データセットで達成している。
論文 参考訳(メタデータ) (2024-08-22T13:58:55Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Towards a Prediction of Machine Learning Training Time to Support
Continuous Learning Systems Development [5.207307163958806]
我々は全文を実証研究する。
ZhengらによるFPTC(Time Complexity)アプローチ。
本稿では,ロジスティック回帰とランダムフォレスト分類のための定式化について検討する。
本研究では,本研究から,学習時間の予測が文脈とどのように密接に関連しているかを観察する。
論文 参考訳(メタデータ) (2023-09-20T11:35:03Z) - Deep learning models for price forecasting of financial time series: A
review of recent advancements: 2020-2022 [6.05458608266581]
ディープラーニングモデルは、価格予測タスクのための従来の統計モデルと機械学習モデルを置き換えるものだ。
このレビューは、ディープラーニングに基づく予測モデルについて深く掘り下げ、モデルアーキテクチャ、実践的応用、およびそれぞれの利点と欠点に関する情報を提示する。
この貢献には、価格予測のための複雑な構造を持つディープラーニングモデルの有効性を検討するなど、将来の研究に向けた潜在的方向性も含まれている。
論文 参考訳(メタデータ) (2023-04-21T03:46:09Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Real-time Forecasting of Time Series in Financial Markets Using
Sequentially Trained Many-to-one LSTMs [0.304585143845864]
2つのLSTMをトレーニングし、例えば、以前のデータのT$タイムステップをトレーニングし、1回だけ前に進むことを予測します。
1つのLSTMは最適なエポック数を見つけるために使用されるが、第2のLSTMは予測するエポック数だけを訓練する。
我々は、現在の予測を次の予測のためのトレーニングセットとして扱い、同じLSTMを訓練する。
論文 参考訳(メタデータ) (2022-05-10T05:18:45Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - A Deep Learning Framework for Predicting Digital Asset Price Movement
from Trade-by-trade Data [20.392440676633573]
本稿では,取引単位のデータから暗号通貨の価格変動を予測する枠組みを提案する。
このモデルは、1年近いトレードバイトレーダデータで高いパフォーマンスを達成するために訓練されている。
現実的な取引シミュレーション環境では、モデルによる予測は簡単に収益化できる。
論文 参考訳(メタデータ) (2020-10-11T10:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。