論文の概要: Towards User Guided Actionable Recourse
- arxiv url: http://arxiv.org/abs/2309.02517v1
- Date: Tue, 5 Sep 2023 18:06:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 17:56:59.500903
- Title: Towards User Guided Actionable Recourse
- Title(参考訳): ユーザ誘導型行動可能リコースに向けて
- Authors: Jayanth Yetukuri, Ian Hardy and Yang Liu
- Abstract要約: Actionable Recourse (AR)は、ユーザの行動可能な機能に対するコスト効率の高い変更を推奨し、望ましい結果を得るのに役立つ。
ユーザ優先行動規範(UP-AR)を特定するための勾配に基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 5.669106489320257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning's proliferation in critical fields such as healthcare,
banking, and criminal justice has motivated the creation of tools which ensure
trust and transparency in ML models. One such tool is Actionable Recourse (AR)
for negatively impacted users. AR describes recommendations of cost-efficient
changes to a user's actionable features to help them obtain favorable outcomes.
Existing approaches for providing recourse optimize for properties such as
proximity, sparsity, validity, and distance-based costs. However, an
often-overlooked but crucial requirement for actionability is a consideration
of User Preference to guide the recourse generation process. In this work, we
attempt to capture user preferences via soft constraints in three simple forms:
i) scoring continuous features, ii) bounding feature values and iii) ranking
categorical features. Finally, we propose a gradient-based approach to identify
User Preferred Actionable Recourse (UP-AR). We carried out extensive
experiments to verify the effectiveness of our approach.
- Abstract(参考訳): 医療、銀行、刑事司法といった重要な分野における機械学習の普及は、MLモデルの信頼性と透明性を保証するツールの開発を動機付けている。
そのようなツールのひとつが、悪影響のあるユーザのためのActionable Recourse(AR)だ。
arは、望ましい結果を得るために、ユーザの実行可能な機能に対するコスト効率の高い変更を推奨する。
リコースを提供する既存のアプローチは、近接性、スパーシティ、妥当性、距離ベースのコストなどの特性を最適化する。
しかし、しばしば見過ごされるが、実行可能性に対する重要な要件は、リコース生成プロセスを導くためのユーザの好みを考慮することである。
本研究では,3つの簡単な形式で,ソフト制約によってユーザの好みを捉えようとする。
一 連続的特徴の得点
二 特徴値及び特徴値の有界化
三 分類上の特徴
最後に,ユーザ優先アクション・リコース(UP-AR)を特定するための勾配に基づくアプローチを提案する。
提案手法の有効性を検証するための広範囲な実験を行った。
関連論文リスト
- Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の価値を合わせるための一般的なアプローチである。
本稿では,分散ロバスト最適化(DRO)に基づく適応的優先損失を提案する。
提案手法は多用途であり,様々な選好最適化フレームワークに容易に適用可能である。
論文 参考訳(メタデータ) (2024-06-04T20:33:22Z) - Introducing User Feedback-based Counterfactual Explanations (UFCE) [49.1574468325115]
対実的説明(CE)は、XAIで理解可能な説明を生成するための有効な解決策として浮上している。
UFCEは、アクション可能な機能のサブセットで最小限の変更を決定するために、ユーザー制約を含めることができる。
UFCEは、textitproximity(英語版)、textitsparsity(英語版)、textitfeasibility(英語版)の2つのよく知られたCEメソッドより優れている。
論文 参考訳(メタデータ) (2024-02-26T20:09:44Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
人間は、新しいタスクを学ぶ際に、過去の経験を明確に表現する能力を持っている。
本稿では,歴史情報を活用するためのアドオンモジュールとして,自己参照(SR)アプローチを提案する。
提案手法は,非教師付き強化学習ベンチマークにおけるIQM(Interquartile Mean)性能と最適ギャップ削減の両面から,最先端の成果を実現する。
論文 参考訳(メタデータ) (2023-11-16T09:07:34Z) - Adversarial Batch Inverse Reinforcement Learning: Learn to Reward from
Imperfect Demonstration for Interactive Recommendation [23.048841953423846]
我々は、強化学習の基礎となる報奨学習の問題に焦点をあてる。
従来のアプローチでは、報酬を得るための追加の手順を導入するか、最適化の複雑さを増大させる。
所望の特性を実現するために, バッチ逆強化学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-30T13:43:20Z) - Explainable Active Learning for Preference Elicitation [0.0]
我々は、最小限のユーザ労力で情報取得を最大化することを目的として、この問題を解決するためにアクティブラーニング(AL)を採用している。
ALは、大きなラベルのない集合から情報的データを選択して、それらをラベル付けするオラクルを問い合わせる。
ベースとなる機械学習(ML)モデルを更新するために、ユーザからのフィードバック(提示された項目に関するシステムの説明のために)を情報的なサンプルから収集する。
論文 参考訳(メタデータ) (2023-09-01T09:22:33Z) - COURIER: Contrastive User Intention Reconstruction for Large-Scale Visual Recommendation [33.903096803803706]
我々は、既存のモダリティ機能を超えたさらなる改善のために、推奨に適した視覚的特徴事前学習法が必要であると論じる。
本研究では,行動履歴からユーザ興味に関連する視覚的特徴を抽出する効果的なユーザ意図再構築モジュールを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:45:24Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
クリックスルー率(CTR)予測は、ユーザーが商品をクリックする確率を予測することを目的としており、リコメンデーションシステムにおいてますます重要になっている。
近年,ユーザの行動からユーザの興味を自動的に抽出する深層学習モデルが大きな成功を収めている。
そこで我々は,メタラッパー(Meta-Wrapper)と呼ばれるラッパー手法の枠組みに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-28T03:28:15Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Probabilistically Robust Recourse: Navigating the Trade-offs between
Costs and Robustness in Algorithmic Recourse [34.39887495671287]
本稿では,達成された(反感)と所望のリコース無効率とのギャップを同時に最小化する目的関数を提案する。
我々は,任意のインスタンスに対応するリコース無効化率を特徴付けるために,新しい理論的結果を開発した。
複数の実世界のデータセットを用いた実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-03-13T21:39:24Z) - Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions [74.00030431081751]
本稿では,ユーザ固有のコスト関数の概念を定式化し,ユーザのための行動可能なリコースを識別する新しい手法を提案する。
本手法は,強いベースライン法に比べて最大25.89パーセントのユーザを満足させる。
論文 参考訳(メタデータ) (2021-11-01T19:49:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。