論文の概要: Enhancing Event Sequence Modeling with Contrastive Relational Inference
- arxiv url: http://arxiv.org/abs/2309.02868v1
- Date: Wed, 6 Sep 2023 09:47:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 16:06:18.013065
- Title: Enhancing Event Sequence Modeling with Contrastive Relational Inference
- Title(参考訳): コントラスト関係推論によるイベントシーケンスモデリングの強化
- Authors: Yan Wang, Zhixuan Chu, Tao Zhou, Caigao Jiang, Hongyan Hao, Minjie
Zhu, Xindong Cai, Qing Cui, Longfei Li, James Y Zhang, Siqiao Xue, Jun Zhou
- Abstract要約: 本研究では,観測データから動的パターンを同時に学習しながら,相互作用を推論する関係グラフを学習する手法を提案する。
提案手法であるContrastive Inference-based Hawkes Process (CRIHP) は,変動推論フレームワーク下での事象相互作用の理由である。
強度に基づく学習を利用して、関係制約を対比するプロトタイプパスを探索する。
- 参考スコア(独自算出の注目度): 21.51753838306655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural temporal point processes(TPPs) have shown promise for modeling
continuous-time event sequences. However, capturing the interactions between
events is challenging yet critical for performing inference tasks like
forecasting on event sequence data. Existing TPP models have focused on
parameterizing the conditional distribution of future events but struggle to
model event interactions. In this paper, we propose a novel approach that
leverages Neural Relational Inference (NRI) to learn a relation graph that
infers interactions while simultaneously learning the dynamics patterns from
observational data. Our approach, the Contrastive Relational Inference-based
Hawkes Process (CRIHP), reasons about event interactions under a variational
inference framework. It utilizes intensity-based learning to search for
prototype paths to contrast relationship constraints. Extensive experiments on
three real-world datasets demonstrate the effectiveness of our model in
capturing event interactions for event sequence modeling tasks.
- Abstract(参考訳): ニューラル・テンポラリ・ポイント・プロセス(tpps)は連続時間イベントシーケンスのモデリングに有望であることを示した。
しかし、イベントシーケンスデータの予測のような推論タスクを実行するためには、イベント間のインタラクションをキャプチャすることは難しい。
既存のTPPモデルは、将来の事象の条件分布をパラメータ化することに重点を置いている。
本稿では、ニューラルリレーショナル推論(NRI)を利用して、観測データから動的パターンを同時に学習しながら相互作用を推論する関係グラフを学習する新しいアプローチを提案する。
我々のアプローチであるContrastive Relational Inference-based Hawkes Process (CRIHP)は、変動推論フレームワークの下でのイベント相互作用の理由である。
強度に基づく学習を利用して、コントラスト関係制約のプロトタイプパスを探索する。
3つの実世界のデータセットに対する大規模な実験は、イベントシーケンスモデリングタスクにおけるイベントインタラクションのキャプチャにおける我々のモデルの有効性を示す。
関連論文リスト
- Decoupled Marked Temporal Point Process using Neural Ordinary Differential Equations [14.828081841581296]
MTPP(マークド・テンポラル・ポイント・プロセス)は、イベント・タイム・データの集合である。
近年の研究では、ディープニューラルネットワークを使用してイベントの複雑な時間的依存関係をキャプチャしている。
本稿では,プロセスの特性を異なる事象からの進化的影響の集合に分解する脱結合型MTPPフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-10T10:15:32Z) - Interaction Event Forecasting in Multi-Relational Recursive HyperGraphs: A Temporal Point Process Approach [12.142292322071299]
本研究は,マルチリレーショナル再帰的ハイパーグラフにおける高次相互作用事象の予測問題に対処する。
提案したモデルであるtextitRelational Recursive Hyperedge Temporal Point Process (RRHyperTPP) は,歴史的相互作用パターンに基づいて動的ノード表現を学習するエンコーダを使用する。
我々は,従来のインタラクション予測手法よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2024-04-27T15:46:54Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFunモデルは、累積分布関数(CDF)を中心に回転するTPPに対する新しいアプローチを表す
提案手法は従来のTPPモデリングに固有のいくつかの重要な問題に対処する。
コントリビューションには、先駆的なCDFベースのTPPモデルの導入、過去の事象情報を将来の事象予測に組み込む方法論の開発が含まれている。
論文 参考訳(メタデータ) (2024-02-01T07:21:30Z) - Interacting Diffusion Processes for Event Sequence Forecasting [20.380620709345898]
拡散生成モデルを組み込んだ新しい手法を提案する。
このモデルはシーケンス・ツー・シーケンスの予測を容易にし、過去のイベント・シーケンスに基づいた複数ステップの予測を可能にする。
提案手法は,TPPの長期予測において,最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-26T22:17:25Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Modeling Continuous Time Sequences with Intermittent Observations using
Marked Temporal Point Processes [25.074394338483575]
人間の活動を通じて生成された大量のデータは、連続した時間のイベントのシーケンスとして表現することができる。
これらの連続的なイベントシーケンスに対するディープラーニングモデルは、非自明なタスクである。
本研究では,イベントシーケンスが欠落している場合にMTPPを学習するための新しい教師なしモデルと推論手法を提案する。
論文 参考訳(メタデータ) (2022-06-23T18:23:20Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
グラフニューラルネットワークとマーク付き時間点プロセス(MTPP)を組み合わせた新しいモデルを提案する。
実験では,モデルの精度と訓練効率の両面から,モデルの優れた性能を実証した。
論文 参考訳(メタデータ) (2022-05-21T15:30:25Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。