論文の概要: Physics-Informed Neural Networks for an optimal counterdiabatic quantum
computation
- arxiv url: http://arxiv.org/abs/2309.04434v2
- Date: Wed, 13 Sep 2023 07:32:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-14 17:02:20.489391
- Title: Physics-Informed Neural Networks for an optimal counterdiabatic quantum
computation
- Title(参考訳): 最適反断熱量子計算のための物理インフォームドニューラルネットワーク
- Authors: Antonio Ferrer-S\'anchez and Carlos Flores-Garrigos and Carlos
Hernani-Morales and Jos\'e J. Orqu\'in-Marqu\'es and Narendra N. Hegade and
Alejandro Gomez Cadavid and Iraitz Montalban and Enrique Solano and Yolanda
Vives-Gilabert and Jos\'e D. Mart\'in-Guerrero
- Abstract要約: 我々は,N_Q$量子ビットを持つ系からなる量子回路の最適化において,物理インフォームドニューラルネットワーク(PINN)の強度を活用して,逆ダイアバティック(CD)プロトコルに対処する新しい手法を提案する。
この手法の主な応用は、STO-3Gベースの2量子および4量子系で表される$mathrmH_2$と$mathrmLiH$分子である。
- 参考スコア(独自算出の注目度): 32.73124984242397
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a novel methodology that leverages the strength of
Physics-Informed Neural Networks (PINNs) to address the counterdiabatic (CD)
protocol in the optimization of quantum circuits comprised of systems with
$N_{Q}$ qubits. The primary objective is to utilize physics-inspired deep
learning techniques to accurately solve the time evolution of the different
physical observables within the quantum system. To accomplish this objective,
we embed the necessary physical information into an underlying neural network
to effectively tackle the problem. In particular, we impose the hermiticity
condition on all physical observables and make use of the principle of least
action, guaranteeing the acquisition of the most appropriate counterdiabatic
terms based on the underlying physics. The proposed approach offers a
dependable alternative to address the CD driving problem, free from the
constraints typically encountered in previous methodologies relying on
classical numerical approximations. Our method provides a general framework to
obtain optimal results from the physical observables relevant to the problem,
including the external parameterization in time known as scheduling function,
the gauge potential or operator involving the non-adiabatic terms, as well as
the temporal evolution of the energy levels of the system, among others. The
main applications of this methodology have been the $\mathrm{H_{2}}$ and
$\mathrm{LiH}$ molecules, represented by a 2-qubit and 4-qubit systems
employing the STO-3G basis. The presented results demonstrate the successful
derivation of a desirable decomposition for the non-adiabatic terms, achieved
through a linear combination utilizing Pauli operators. This attribute confers
significant advantages to its practical implementation within quantum computing
algorithms.
- Abstract(参考訳): 我々は,N_{Q}$ qubitsの系からなる量子回路の最適化において,物理インフォームドニューラルネットワーク(PINN)の強度を活用して,逆ダイアバティック(CD)プロトコルに対処する新しい手法を提案する。
第一の目的は、物理学に触発された深層学習技術を利用して、量子システム内の異なる物理観測器の時間的進化を正確に解くことである。
この目的を達成するために,基盤となるニューラルネットワークに物理情報を埋め込み,この問題を効果的に解決する。
特に、すべての物理観測対象にハーミシティ条件を課し、最小作用の原理を用いて、基礎となる物理学に基づく最も適切な反断熱項の取得を保証する。
提案手法は,古典的数値近似に依存する従来手法の制約によらず,CD駆動問題に対処するための信頼性の高い代替手段を提供する。
本手法は、スケジューリング関数として知られる時間における外部パラメータ化、非断熱語を含むゲージポテンシャルや演算子、システムのエネルギー準位の時間的変化など、問題に関連する物理的観測結果から最適な結果を得るための一般的な枠組みを提供する。
この方法論の主な応用は、STO-3Gベースの2量子および4量子系で表される$\mathrm{H_{2}}$と$\mathrm{LiH}$分子である。
提案した結果は,パウリ作用素を用いた線形結合により達成された非断熱的項に対する望ましい分解の導出に成功したことを示す。
この属性は、量子コンピューティングアルゴリズムにおける実践的な実装に重大な利点をもたらす。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Addressing the Non-perturbative Regime of the Quantum Anharmonic Oscillator by Physics-Informed Neural Networks [0.9374652839580183]
量子領域において、そのようなアプローチは、非可積分系に対するシュレーディンガー方程式を解く新しいアプローチへの道を開く。
実数および虚数周波数のシステムについて検討し、量子場理論に現れる問題に対処するための新しい数値法の基礎を築いた。
論文 参考訳(メタデータ) (2024-05-22T08:34:52Z) - A Hybrid Quantum-Classical Physics-Informed Neural Network Architecture for Solving Quantum Optimal Control Problems [1.4811951486536687]
この研究は、量子状態操作を最適化するための革新的なアプローチを示している。
提案したハイブリッドモデルは,最適制御問題の解法として機械学習手法を効果的に適用する。
これは、量子状態遷移問題を解決するために、ハイブリッドPINNネットワークの設計と実装を通して説明される。
論文 参考訳(メタデータ) (2024-04-23T13:22:22Z) - Scalable Imaginary Time Evolution with Neural Network Quantum States [0.0]
ニューラルネットワーク量子状態(NQS)としての量子波関数の表現は、多体量子系の基底状態を見つけるための強力な変分アンサッツを提供する。
我々は、計量テンソルの計算をバイパスするアプローチを導入し、代わりにユークリッド計量を用いた一階降下にのみ依存する。
我々は,NQSのエネルギーが減少するまで最適な時間ステップを決定し,目標を固定し,適応的に安定させる。
論文 参考訳(メタデータ) (2023-07-28T12:26:43Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Physics-informed neural networks for quantum control [0.0]
物理インフォームドニューラルネットワーク(PINN)を用いた最適量子制御問題の計算手法を提案する。
我々は,高確率,短時間の進化,低エネルギー消費制御を用いた状態間移動問題を効率的に解き,量子システムを開放する手法を適用した。
論文 参考訳(メタデータ) (2022-06-13T16:17:22Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
VQEとADAPT-VQEの精度をベンチマークし、電子基底状態とポテンシャルエネルギー曲線を計算する。
どちらの手法もエネルギーと基底状態の優れた推定値を提供する。
勾配に基づく最適化はより経済的であり、勾配のない類似シミュレーションよりも優れた性能を提供する。
論文 参考訳(メタデータ) (2020-11-02T19:52:04Z) - Low depth mechanisms for quantum optimization [0.25295633594332334]
我々は、成功の物理的メカニズムとアルゴリズム改善の導出の失敗を理解するために、グラフ上の運動エネルギーに関連する言語とツールの開発に重点を置いている。
これは、波動関数の閉じ込め、位相ランダム化、理想解から遠く離れた目標に潜む影欠陥の影響と関係している。
論文 参考訳(メタデータ) (2020-08-19T18:16:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。