論文の概要: A Novel Training Framework for Physics-informed Neural Networks: Towards Real-time Applications in Ultrafast Ultrasound Blood Flow Imaging
- arxiv url: http://arxiv.org/abs/2309.04755v2
- Date: Sat, 11 Jan 2025 15:22:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:22:04.685780
- Title: A Novel Training Framework for Physics-informed Neural Networks: Towards Real-time Applications in Ultrafast Ultrasound Blood Flow Imaging
- Title(参考訳): 物理インフォームドニューラルネットワークのための新しいトレーニングフレームワーク:超高速超音波血流イメージングにおけるリアルタイム応用を目指して
- Authors: Haotian Guan, Jinping Dong, Wei-Ning Lee,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、ナビエ・ストークス方程式の最も卓越した解法の一つである。
そこで我々は,Navier-Stokes方程式を解くための新しいPINNトレーニングフレームワークを提案する。
両アルゴリズムは, PINNの当初の設計よりも高速であった。
- 参考スコア(独自算出の注目度): 4.026131444046116
- License:
- Abstract: Ultrafast ultrasound blood flow imaging is a state-of-the-art technique for depiction of complex blood flow dynamics in vivo through thousands of full-view image data (or, timestamps) acquired per second. Physics-informed Neural Network (PINN) is one of the most preeminent solvers of the Navier-Stokes equations, widely used as the governing equation of blood flow. However, that current approaches rely on full Navier-Stokes equations is impractical for ultrafast ultrasound. We hereby propose a novel PINN training framework for solving the Navier-Stokes equations. It involves discretizing Navier-Stokes equations into steady state and sequentially solving them with test-time adaptation. The novel training framework is coined as SeqPINN. Upon its success, we propose a parallel training scheme for all timestamps based on averaged constant stochastic gradient descent as initialization. Uncertainty estimation through Stochastic Weight Averaging Gaussian is then used as an indicator of generalizability of the initialization. This algorithm, named SP-PINN, further expedites training of PINN while achieving comparable accuracy with SeqPINN. The performance of SeqPINN and SP-PINN was evaluated through finite-element simulations and in vitro phantoms of single-branch and trifurcate blood vessels. Results show that both algorithms were manyfold faster than the original design of PINN, while respectively achieving Root Mean Square Errors of 0.63 cm/s and 0.81 cm/s on the straight vessel and 1.35 cm/s and 1.63 cm/s on the trifurcate vessel when recovering blood flow velocities. The successful implementation of SeqPINN and SP-PINN open the gate for real-time training of PINN for Navier-Stokes equations and subsequently reliable imaging-based blood flow assessment in clinical practice.
- Abstract(参考訳): 超高速超音波血流イメージングは、何千ものフルビュー画像データ(またはタイムスタンプ)を毎秒取得することで、生体内で複雑な血流動態を描写するための最先端技術である。
物理インフォームドニューラルネットワーク(PINN)は、ナヴィエ・ストークス方程式の最も卓越した解法の一つである。
しかし、現在のアプローチは完全なナビエ・ストークス方程式に依存しているため、超高速超音波には実用的ではない。
本稿では,Navier-Stokes方程式を解くための新しいPINNトレーニングフレームワークを提案する。
ナビエ・ストークス方程式を定常状態に離散化し、テスト時間適応でそれらを逐次解く。
新たなトレーニングフレームワークはSeqPINNと呼ばれている。
その成功に際し、初期化として定値確率勾配勾配に基づく全タイムスタンプの並列トレーニング手法を提案する。
確率重み平均化ガウスによる不確かさ推定は初期化の一般化可能性の指標として用いられる。
SP-PINNと名付けられたこのアルゴリズムは、SeqPINNと同等の精度でPINNのトレーニングを高速化する。
SeqPINNとSP-PINNの性能は有限要素シミュレーションと単枝血管と三葉血管のin vitroファントムを用いて評価した。
その結果、両アルゴリズムはPINNの当初の設計よりもはるかに高速であり、血行速度を回復する際には、それぞれストレート容器で0.63cm/s、ストレート容器で0.81cm/s、トリフルケート容器で1.35cm/s、および1.63cm/sのルート平均角誤差を達成できた。
SeqPINNとSP-PINNの実装の成功により、Navier-Stokes方程式に対するPINNのリアルタイムトレーニングのためのゲートが開かれ、その後、臨床における画像ベースの血流評価が信頼できる。
関連論文リスト
- Spectral-Refiner: Fine-Tuning of Accurate Spatiotemporal Neural Operator for Turbulent Flows [6.961408873053586]
本稿では,ボヒナー空間間のマップを学習する新しい時間的ニューラル演算子(SFNO)と,これらの問題に対処する新しい学習フレームワークを提案する。
この新しいパラダイムは、従来の数値PDE理論と技法の知恵を利用して、一般的に採用されているエンドツーエンドのニューラル演算子のトレーニングと評価のパイプラインを洗練する。
2次元NSEのための一般的なベンチマークの数値実験は、エンドツーエンド評価や従来の数値PDEソルバと比較して計算効率と精度の両方が大幅に向上した。
論文 参考訳(メタデータ) (2024-05-27T14:33:06Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
シンボリック・ルール学習者は解釈可能な解を生成するが、入力を記号的に符号化する必要がある。
ニューロシンボリックアプローチは、ニューラルネットワークを使用して生データを潜在シンボリック概念にマッピングすることで、この問題を克服する。
我々は,ニューラルネットワークを記号学習者と共同でトレーニングする,スケーラブルで高速なエンドツーエンドアプローチであるNeuralFastLASを紹介する。
論文 参考訳(メタデータ) (2023-10-08T12:33:42Z) - Speed Limits for Deep Learning [67.69149326107103]
熱力学の最近の進歩は、初期重量分布から完全に訓練されたネットワークの最終分布への移動速度の制限を可能にする。
線形および線形化可能なニューラルネットワークに対して,これらの速度制限に対する解析式を提供する。
NTKスペクトルとラベルのスペクトル分解に関するいくつかの妥当なスケーリング仮定を考えると、学習はスケーリングの意味で最適である。
論文 参考訳(メタデータ) (2023-07-27T06:59:46Z) - RANS-PINN based Simulation Surrogates for Predicting Turbulent Flows [3.1861308132183384]
我々は,高レイノルズ数乱流状態における流れ場を予測するために,改良されたPINNフレームワークであるRANS-PINNを導入する。
乱流によってもたらされるさらなる複雑さを考慮するため、RANS-PINNはレイノルズ平均ナヴィエ・ストークス(RANS)の定式化に基づく2方程式渦粘性モデルを採用している。
論文 参考訳(メタデータ) (2023-06-09T16:55:49Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
実験によって測定された速度場の時間的変化を予測するために,最先端の演算子学習手法を適用した。
その結果、FNOはレイノルズ数の範囲で実験速度場の進化を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2023-01-19T20:04:36Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
本稿では、ニューラルネットワークをトレーニングし、失明したデータから視覚情報や鋭いコンテンツを復元するためのニューラルネットワークの最大Aポストエリオリ(NeurMAP)推定フレームワークを提案する。
提案されたNeurMAPは、既存のデブロアリングニューラルネットワークに対するアプローチであり、未使用データセット上のイメージデブロアリングネットワークのトレーニングを可能にする最初のフレームワークである。
論文 参考訳(メタデータ) (2022-04-26T08:09:47Z) - A robust single-pixel particle image velocimetry based on fully
convolutional networks with cross-correlation embedded [3.3579727024861064]
深層学習法と従来の相互相関法を相乗的に組み合わせた新しい速度場推定パラダイムを提案する。
深層学習法は、粗い速度推定を最適化し、補正し、超解法計算を実現する。
参考として、粗い速度推定は提案アルゴリズムの堅牢性を向上させるのに役立つ。
論文 参考訳(メタデータ) (2021-10-31T03:26:08Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
本稿では,地質岩のマイクロCTによる透水率予測手法を提案する。
透過性予測専用のCNNのためのトレーニングデータセットは、古典格子ボルツマン法(LBM)によって通常生成される透過性ラベルからなる。
その代わりに、定常ストークス方程式を効率的かつ分散並列に解き、直接数値シミュレーション(DNS)を行う。
論文 参考訳(メタデータ) (2021-09-04T08:43:19Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z) - Neural Particle Image Velocimetry [4.416484585765027]
本稿では,この問題に適応した畳み込みニューラルネットワーク,すなわちボリューム対応ネットワーク(VCN)を紹介する。
ネットワークは、合成データと実フローデータの両方を含むデータセット上で、徹底的にトレーニングされ、テストされる。
解析の結果,提案手法は現場における他の最先端手法と同等の精度を保ちながら,効率の向上を図っている。
論文 参考訳(メタデータ) (2021-01-28T12:03:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。