論文の概要: A Comprehensive Survey on Deep Learning Techniques in Educational Data
Mining
- arxiv url: http://arxiv.org/abs/2309.04761v2
- Date: Fri, 13 Oct 2023 11:18:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 03:40:25.072475
- Title: A Comprehensive Survey on Deep Learning Techniques in Educational Data
Mining
- Title(参考訳): 教育データマイニングにおけるディープラーニング技術に関する包括的調査
- Authors: Yuanguo Lin, Hong Chen, Wei Xia, Fan Lin, Pengcheng Wu, Zongyue Wang,
Yong Liu
- Abstract要約: 教育データマイニング(EDM: Educational Data Mining)は、計算技術の力を利用して教育データを分析する研究分野として発展してきた。
ディープラーニング技術は、データの分析とモデリングに関わる課題に対処する上で、大きな利点を示してきた。
この調査は、Deep LearningによるEDMの最先端を体系的にレビューすることを目的としている。
- 参考スコア(独自算出の注目度): 28.841584952429592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Educational Data Mining (EDM) has emerged as a vital field of research, which
harnesses the power of computational techniques to analyze educational data.
With the increasing complexity and diversity of educational data, Deep Learning
techniques have shown significant advantages in addressing the challenges
associated with analyzing and modeling this data. This survey aims to
systematically review the state-of-the-art in EDM with Deep Learning. We begin
by providing a brief introduction to EDM and Deep Learning, highlighting their
relevance in the context of modern education. Next, we present a detailed
review of Deep Learning techniques applied in four typical educational
scenarios, including knowledge tracing, undesirable student detecting,
performance prediction, and personalized recommendation. Furthermore, a
comprehensive overview of public datasets and processing tools for EDM is
provided. Finally, we point out emerging trends and future directions in this
research area.
- Abstract(参考訳): 教育データマイニング(edm: educational data mining)は、計算技術の力を活用し、教育データを分析する重要な研究分野である。
教育データの複雑さと多様性が高まる中、ディープラーニング技術は、データの解析とモデリングに関連する課題に対処する上で、大きなアドバンテージを示している。
この調査は、Deep LearningによるEDMの現状を体系的にレビューすることを目的としている。
まず、EDMとDeep Learningの簡単な紹介から始め、現代の教育の文脈におけるそれらの関連性を強調します。
次に、知識追跡、望ましくない学生検出、性能予測、パーソナライズドレコメンデーションを含む4つの典型的な教育シナリオに適用されるディープラーニング技術について、詳細なレビューを行う。
さらに、EDMのための公開データセットと処理ツールの概要を概観する。
最後に,本研究領域における新たな動向と今後の方向性を指摘する。
関連論文リスト
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
水中画像強調(UIE)はコンピュータビジョン研究において重要な課題である。
多数のUIEアルゴリズムが開発されているにもかかわらず、網羅的で体系的なレビューはいまだに欠落している。
論文 参考訳(メタデータ) (2024-05-30T04:46:40Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
各視点の技術的進歩を体系的にレビューし、関連するデータセットとベンチマークを整理し、教育におけるLSMの展開に伴うリスクと課題を特定する。
本調査は、LLMの力を利用して教育実践を変革し、より効果的なパーソナライズされた学習環境を育むための、教育者、研究者、政策立案者のための総合的な技術図を提供することを目的とする。
論文 参考訳(メタデータ) (2024-03-26T21:04:29Z) - A Review of Data Mining in Personalized Education: Current Trends and
Future Prospects [30.033926908231297]
本稿では,教育推薦,認知診断,知識追跡,学習分析の4つのシナリオに焦点をあてる。
教育プラットフォームにおけるAIの統合は、学術的パフォーマンス、学習の好み、行動に関する洞察を提供し、個人の学習プロセスを最適化する。
論文 参考訳(メタデータ) (2024-02-27T06:09:48Z) - Integrating AI and Learning Analytics for Data-Driven Pedagogical Decisions and Personalized Interventions in Education [0.2812395851874055]
本研究では,革新的な学習分析ツールの概念化,開発,展開について検討する。
学生のストレスレベル、好奇心、混乱、扇動、トピックの嗜好、学習方法などの重要なデータポイントを分析し、学習環境の総合的なビューを提供する。
この研究は、パーソナライズされたデータ駆動型教育を形成する上で、AIが果たす役割を浮き彫りにする。
論文 参考訳(メタデータ) (2023-12-15T06:00:26Z) - Semi-Supervised and Unsupervised Deep Visual Learning: A Survey [76.2650734930974]
半教師なし学習と教師なし学習は、ラベルなしの視覚データから学ぶための有望なパラダイムを提供する。
本稿では, 半教師付き学習(SSL)と非教師付き学習(UL)の先進的な深層学習アルゴリズムについて, 統一的な視点による視覚的認識について概説する。
論文 参考訳(メタデータ) (2022-08-24T04:26:21Z) - A Survey on Deep Reinforcement Learning for Data Processing and
Analytics [14.88856391719732]
深層強化学習を活用したデータ処理と分析の改善に焦点をあてた最近の研究成果を概観する。
まず, 深層強化学習における鍵となる概念, 理論, 方法を紹介する。
次に、データベースシステムにおける深層強化学習の展開について論じ、データ処理と分析を容易にする。
論文 参考訳(メタデータ) (2021-08-10T09:14:03Z) - Deep Learning Schema-based Event Extraction: Literature Review and
Current Trends [60.29289298349322]
ディープラーニングに基づくイベント抽出技術が研究ホットスポットとなっている。
本稿では,ディープラーニングモデルに焦点をあて,最先端のアプローチを見直し,そのギャップを埋める。
論文 参考訳(メタデータ) (2021-07-05T16:32:45Z) - Deep Learning for Road Traffic Forecasting: Does it Make a Difference? [6.220008946076208]
本稿では,このITS研究領域におけるDeep Learningの活用に言及した技術の現状を批判的に分析することに焦点を当てる。
後続の批判分析は、交通予測のためのディープラーニングの問題について、質問を定式化し、必要な議論を引き起こす。
論文 参考訳(メタデータ) (2020-12-02T15:56:11Z) - Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
Open Problems [108.81683598693539]
オフラインの強化学習アルゴリズムは、巨大なデータセットを強力な意思決定エンジンにできるという、大きな約束を持っています。
我々は,これらの課題,特に近代的な深層強化学習手法の文脈において,読者にこれらの課題を理解することを目的としている。
論文 参考訳(メタデータ) (2020-05-04T17:00:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。