論文の概要: Geometrically Consistent Partial Shape Matching
- arxiv url: http://arxiv.org/abs/2309.05013v1
- Date: Sun, 10 Sep 2023 12:21:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 15:08:32.730702
- Title: Geometrically Consistent Partial Shape Matching
- Title(参考訳): 幾何学的に一貫した部分形状マッチング
- Authors: Viktoria Ehm, Paul Roetzer, Marvin Eisenberger, Maolin Gao, Florian
Bernard, Daniel Cremers
- Abstract要約: 3次元形状の対応を見つけることは、コンピュータビジョンとグラフィックスにおいて重要な問題である。
しばしば無視されるが、整合幾何学の重要な性質は整合性である。
本稿では,新しい整数型線形計画部分形状整合式を提案する。
- 参考スコア(独自算出の注目度): 50.29468769172704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finding correspondences between 3D shapes is a crucial problem in computer
vision and graphics, which is for example relevant for tasks like shape
interpolation, pose transfer, or texture transfer. An often neglected but
essential property of matchings is geometric consistency, which means that
neighboring triangles in one shape are consistently matched to neighboring
triangles in the other shape. Moreover, while in practice one often has only
access to partial observations of a 3D shape (e.g. due to occlusion, or
scanning artifacts), there do not exist any methods that directly address
geometrically consistent partial shape matching. In this work we fill this gap
by proposing to integrate state-of-the-art deep shape features into a novel
integer linear programming partial shape matching formulation. Our optimization
yields a globally optimal solution on low resolution shapes, which we then
refine using a coarse-to-fine scheme. We show that our method can find more
reliable results on partial shapes in comparison to existing geometrically
consistent algorithms (for which one first has to fill missing parts with a
dummy geometry). Moreover, our matchings are substantially smoother than
learning-based state-of-the-art shape matching methods.
- Abstract(参考訳): 3次元形状の対応を見つけることはコンピュータビジョンとグラフィックスにおいて重要な問題であり、例えば形状補間、ポーズ転送、テクスチャ転送といったタスクに関係している。
マッチングのしばしば無視されるが本質的な性質は幾何学的一貫性であり、一方の形状の隣接する三角形は他方の形状の隣接する三角形と一貫して一致することを意味する。
さらに、実際には3次元形状の部分的な観察(例えば、閉塞や走査的アーティファクト)にしかアクセスできないことが多いが、幾何学的に一貫した部分的な形状マッチングを直接扱う方法は存在しない。
本研究では、このギャップを、最先端の深部形状特徴を新しい整数計画部分形状整合式に組み込むことによって埋める。
この最適化により,低分解能形状のグローバル最適解が得られ,粗面から細部までのスキームを用いて精錬した。
提案手法は,既存の幾何学的一貫したアルゴリズム(ダミー幾何で欠落部分を埋めるアルゴリズム)と比較して,より信頼性の高い部分形状の結果が得られることを示す。
さらに,我々のマッチングは,学習に基づく最先端形状マッチング手法よりもかなりスムーズである。
関連論文リスト
- Beyond Complete Shapes: A quantitative Evaluation of 3D Shape Matching Algorithms [41.95394677818476]
3次元形状の対応を見つけることは、コンピュータビジョン、グラフィックスなどにおいて重要な問題である。
我々は、挑戦的な部分的な形状マッチングシナリオの手続き生成のための汎用的で柔軟なフレームワークを提供する。
手動で7つの既存の(完全な幾何学)形状マッチングデータセット間のクロスデータセット対応を作成し、合計2543個の形状を生成する。
論文 参考訳(メタデータ) (2024-11-05T21:08:19Z) - Partial-to-Partial Shape Matching with Geometric Consistency [47.46502145377953]
3次元形状の対応を見つけることは、コンピュータビジョン、グラフィックスなどにおいて、重要かつ長年にわたる問題である。
我々は、幾何学的整合性を強い制約として利用することにより、既存の(あるいは人工的な)3次元フル形状マッチングと部分的から部分的な実世界の設定のギャップを埋める。
三角積空間上に構築された新しい整数非線型プログラム形式により実現された部分対部分マッチングの幾何学的整合性を実現する。
論文 参考訳(メタデータ) (2024-04-18T14:14:07Z) - Spectral Meets Spatial: Harmonising 3D Shape Matching and Interpolation [50.376243444909136]
本稿では,3次元形状の対応と形状の両面を統一的に予測する枠組みを提案する。
我々は、スペクトル領域と空間領域の両方の形状を地図化するために、奥行き関数写像フレームワークと古典的な曲面変形モデルを組み合わせる。
論文 参考訳(メタデータ) (2024-02-29T07:26:23Z) - Zero-Shot 3D Shape Correspondence [67.18775201037732]
本稿では,3次元形状間の対応性を計算するためのゼロショット手法を提案する。
我々は、最近の基礎モデルの言語と視覚における例外的な推論能力を活用している。
提案手法は, 強い非等尺形状の間において, ゼロショット方式で高確率な結果をもたらす。
論文 参考訳(メタデータ) (2023-06-05T21:14:23Z) - A Scalable Combinatorial Solver for Elastic Geometrically Consistent 3D
Shape Matching [69.14632473279651]
本稿では,3次元形状間の幾何学的一貫したマッピング空間をグローバルに最適化するスケーラブルなアルゴリズムを提案する。
従来の解法よりも数桁高速なラグランジュ双対問題と結合した新しい原始問題を提案する。
論文 参考訳(メタデータ) (2022-04-27T09:47:47Z) - Spectral Unions of Partial Deformable 3D Shapes [31.93707121229739]
まず, 与えられた部分形状間の密接な対応を第一に解くことなく, 非剛性変形形状の合成を計算する最初の方法を提案する。
我々のアプローチはデータ駆動であり、表面の等尺および非等尺変形に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T14:19:18Z) - Isometric Multi-Shape Matching [50.86135294068138]
形状間の対応を見つけることは、コンピュータビジョンとグラフィックスの基本的な問題である。
アイソメトリーは形状対応問題においてしばしば研究されるが、マルチマッチング環境では明確には考慮されていない。
定式化を解くのに適した最適化アルゴリズムを提案し,コンバージェンスと複雑性解析を提供する。
論文 参考訳(メタデータ) (2020-12-04T15:58:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。