論文の概要: Generalized Graphon Process: Convergence of Graph Frequencies in
Stretched Cut Distance
- arxiv url: http://arxiv.org/abs/2309.05260v1
- Date: Mon, 11 Sep 2023 06:34:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 13:36:57.381332
- Title: Generalized Graphon Process: Convergence of Graph Frequencies in
Stretched Cut Distance
- Title(参考訳): 一般化グラフオンプロセス:ストレッチカット距離におけるグラフ周波数の収束
- Authors: Xingchao Jian, Feng Ji, Wee Peng Tay
- Abstract要約: スパースグラフ列は、従来のカット距離の定義の下で自明なグラフオンに収束する。
我々は、スパースグラフ列の収束を記述するために、一般化グラフと拡張カット距離の概念を利用する。
その結果,スパースグラフ間の移動学習の可能性が示唆された。
- 参考スコア(独自算出の注目度): 30.279435887366578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphons have traditionally served as limit objects for dense graph
sequences, with the cut distance serving as the metric for convergence.
However, sparse graph sequences converge to the trivial graphon under the
conventional definition of cut distance, which make this framework inadequate
for many practical applications. In this paper, we utilize the concepts of
generalized graphons and stretched cut distance to describe the convergence of
sparse graph sequences. Specifically, we consider a random graph process
generated from a generalized graphon. This random graph process converges to
the generalized graphon in stretched cut distance. We use this random graph
process to model the growing sparse graph, and prove the convergence of the
adjacency matrices' eigenvalues. We supplement our findings with experimental
validation. Our results indicate the possibility of transfer learning between
sparse graphs.
- Abstract(参考訳): グラフは伝統的に高密度グラフ列の極限対象として機能し、カット距離は収束の計量として機能している。
しかし、切断距離の定義の下ではスパースグラフ列は自明なグラフオンに収束し、多くの実用用途においてこの枠組みは不十分である。
本稿では,一般化グラフと拡張カット距離の概念を用いて,スパースグラフ列の収束を記述する。
具体的には、一般化されたグラフから生成されるランダムグラフプロセスを考える。
このランダムグラフ過程は拡大カット距離で一般化されたグラトンに収束する。
このランダムグラフプロセスを用いて、増大するスパースグラフをモデル化し、隣接行列の固有値の収束を証明する。
我々は実験的な検証でその結果を補足する。
その結果,スパースグラフ間の移動学習の可能性が示唆された。
関連論文リスト
- Generalization Bounds for Message Passing Networks on Mixture of Graphons [21.457225542391267]
メッセージパッシングニューラルネットワーク(MPNN)の一般化機能について検討する。
正規化和アグリゲーションと平均アグリゲーションを持つMPNNに対して、特に一般化バウンダリを導出する。
以上の結果から,MPNNはトレーニングセットのサイズよりも複雑度が高いため,依然として効果的に一般化可能であることが示唆された。
論文 参考訳(メタデータ) (2024-04-04T14:26:47Z) - Sampling and Uniqueness Sets in Graphon Signal Processing [136.68956350251418]
グラフとグラフの極限の理論を活用して、大きなグラフの族上のサンプリング集合の性質について検討する。
我々は、収束結果を利用して、ほぼ最適なサンプリングセットを得るアルゴリズムを提供する。
論文 参考訳(メタデータ) (2024-01-11T22:31:48Z) - A Poincaré Inequality and Consistency Results for Signal Sampling on Large Graphs [34.99659089854587]
グラフ制限の一種であるグラフオンに対する信号サンプリング理論を導入する。
収束グラフ列上の一意なサンプリング集合は、グラフオン上の一意なサンプリング集合に収束することを示す。
そこで我々は,大規模グラフに対する関連するグラフ信号サンプリングアルゴリズムを提案し,グラフ機械学習タスクにおいて,その優れた経験的性能を示す。
論文 参考訳(メタデータ) (2023-11-17T16:04:31Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
グラフの生成は、非ユークリッド構造の複雑な性質を理解する必要がある実世界のタスクにとって大きな課題である。
本稿では,拡散過程の最終グラフ構造を明示的に学習することにより,グラフのトポロジーをモデル化する生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T17:07:46Z) - Graphon Pooling for Reducing Dimensionality of Signals and Convolutional
Operators on Graphs [131.53471236405628]
グラフ空間における[0, 1]2の分割上のグラフとグラフ信号の誘導的グラフ表現を利用する3つの方法を提案する。
これらの低次元表現がグラフとグラフ信号の収束列を構成することを証明している。
我々は,層間次元減少比が大きい場合,グラノンプーリングは文献で提案した他の手法よりも有意に優れていることを観察した。
論文 参考訳(メタデータ) (2022-12-15T22:11:34Z) - Demystifying Graph Convolution with a Simple Concatenation [6.542119695695405]
グラフトポロジ、ノード特徴、ラベル間の重なり合う情報を定量化する。
グラフの畳み込みは、グラフの畳み込みに代わる単純だが柔軟な代替手段であることを示す。
論文 参考訳(メタデータ) (2022-07-18T16:39:33Z) - G-Mixup: Graph Data Augmentation for Graph Classification [55.63157775049443]
Mixupは、2つのランダムサンプル間の特徴とラベルを補間することにより、ニューラルネットワークの一般化とロバスト性を改善する上で優位性を示している。
グラフ分類のためのグラフを増補するために$mathcalG$-Mixupを提案し、グラフの異なるクラスのジェネレータ(すなわちグラフ)を補間する。
実験により、$mathcalG$-MixupはGNNの一般化とロバスト性を大幅に改善することが示された。
論文 参考訳(メタデータ) (2022-02-15T04:09:44Z) - Learning Graphon Autoencoders for Generative Graph Modeling [91.32624399902755]
Graphonは任意のサイズでグラフを生成する非パラメトリックモデルであり、グラフから簡単に誘導できる。
解析可能でスケーラブルなグラフ生成モデルを構築するために,textitgraphon autoencoder という新しいフレームワークを提案する。
線形グルーポン分解モデルはデコーダとして機能し、潜在表現を活用して誘導されたグルーポンを再構成する。
論文 参考訳(メタデータ) (2021-05-29T08:11:40Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - The Power of Graph Convolutional Networks to Distinguish Random Graph
Models: Short Version [27.544219236164764]
グラフ畳み込みネットワーク(GCN)はグラフ表現学習において広く使われている手法である。
サンプルグラフの埋め込みに基づいて異なるランダムグラフモデルを区別するGCNのパワーについて検討する。
論文 参考訳(メタデータ) (2020-02-13T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。