Robust Single Rotation Averaging Revisited
- URL: http://arxiv.org/abs/2309.05388v5
- Date: Tue, 10 Sep 2024 16:59:37 GMT
- Title: Robust Single Rotation Averaging Revisited
- Authors: Seong Hun Lee, Javier Civera,
- Abstract summary: We propose a novel method for robust single rotation averaging that can efficiently handle an extremely large fraction of outliers.
Our method is robust against up to 99% outliers given a sufficient number of accurate inliers, outperforming the current state of the art.
- Score: 14.533304890042361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a novel method for robust single rotation averaging that can efficiently handle an extremely large fraction of outliers. Our approach is to minimize the total truncated least unsquared deviations (TLUD) cost of geodesic distances. The proposed algorithm consists of three steps: First, we consider each input rotation as a potential initial solution and choose the one that yields the least sum of truncated chordal deviations. Next, we obtain the inlier set using the initial solution and compute its chordal $L_2$-mean. Finally, starting from this estimate, we iteratively compute the geodesic $L_1$-mean of the inliers using the Weiszfeld algorithm on $SO(3)$. An extensive evaluation shows that our method is robust against up to 99% outliers given a sufficient number of accurate inliers, outperforming the current state of the art.
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Private Geometric Median [10.359525525715421]
We study differentially private (DP) algorithms for computing the geometric median (GM) of a dataset.
Our main contribution is a pair of DP algorithms for the task of private GM with an excess error guarantee that scales with the effective diameter of the datapoints.
arXiv Detail & Related papers (2024-06-11T16:13:09Z) - Scalable 3D Registration via Truncated Entry-wise Absolute Residuals [65.04922801371363]
A $3$D registration approach can process more than ten million ($107$) point pairs with over $99%$ random outliers.
We call our method TEAR, as it involves minimizing an outlier-robust loss that computes Truncated Entry-wise Absolute Residuals.
arXiv Detail & Related papers (2024-04-01T04:43:39Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
In many applications, we need algorithms which can align partially overlapping point sets are invariant to the corresponding corresponding RPM algorithm.
We first show that the objective is a cubic bound function. We then utilize the convex envelopes of trilinear and bilinear monomial transformations to derive its lower bound.
We next develop a branch-and-bound (BnB) algorithm which only branches over the transformation variables and runs efficiently.
arXiv Detail & Related papers (2021-01-19T04:24:23Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
We prove that our algorithms require a number of evaluations gradient independent of training set size and number of parameters.
Experiments on MNIST and ImageNet confirm the theoretical scaling of our algorithms, which are 9--36 times more efficient than full-batch methods.
arXiv Detail & Related papers (2020-10-12T17:41:44Z) - List-Decodable Mean Estimation via Iterative Multi-Filtering [44.805549762166926]
We are given a set $T$ of points in $mathbbRd$ with the promise that an unknown $alpha$-fraction of points in $T$ are drawn from an unknown mean and bounded covariance distribution $D$.
We output a small list of hypothesis vectors such that at least one of them is close to the mean of $D$.
In more detail, our algorithm is sample and computationally efficient, and achieves information-theoretically near-optimal error.
arXiv Detail & Related papers (2020-06-18T17:47:37Z) - $\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator [95.71091446753414]
We propose to use a nearest-neighbor-based $gamma$-divergence estimator as a data discrepancy measure.
Our method achieves significantly higher robustness than existing discrepancy measures.
arXiv Detail & Related papers (2020-06-13T06:09:27Z) - Robust estimation via generalized quasi-gradients [28.292300073453877]
We show why many recently proposed robust estimation problems are efficiently solvable.
We identify the existence of "generalized quasi-gradients"
We show that generalized quasi-gradients exist and construct efficient algorithms.
arXiv Detail & Related papers (2020-05-28T15:14:33Z) - Robust Single Rotation Averaging [20.02647320786556]
We propose a novel method for single rotation averaging using the Weiszfeld algorithm.
We show that both our method and the state of the art perform equally well with the proposed outlier rejection scheme.
arXiv Detail & Related papers (2020-04-01T23:06:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.