論文の概要: A real-time, scalable, fast and highly resource efficient decoder for a
quantum computer
- arxiv url: http://arxiv.org/abs/2309.05558v1
- Date: Mon, 11 Sep 2023 15:46:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 12:01:16.928019
- Title: A real-time, scalable, fast and highly resource efficient decoder for a
quantum computer
- Title(参考訳): 量子コンピュータのためのリアルタイム・スケーラブル・高速・高資源効率デコーダ
- Authors: Ben Barber, Kenton M. Barnes, Tomasz Bialas, Okan Bu\u{g}dayc{\i},
Earl T. Campbell, Neil I. Gillespie, Kauser Johar, Ram Rajan, Adam W.
Richardson, Luka Skoric, Canberk Topal, Mark L. Turner, Abbas B. Ziad
- Abstract要約: 両課題を克服するCollision Clusteringデコーダを導入します。
FPGAとASICの両方でデコーダを実装します。
我々のデコーダは高性能かつ資源効率の両面に最適化されており、ハードウェア上での実装はフォールトトレラントな量子コンピュータの実現に有効である。
- 参考スコア(独自算出の注目度): 1.9479059801959495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers promise to solve computing problems that are currently
intractable using traditional approaches. This can only be achieved if the
noise inevitably present in quantum computers can be efficiently managed at
scale. A key component in this process is a classical decoder, which diagnoses
the errors occurring in the system. If the decoder does not operate fast
enough, an exponential slowdown in the logical clock rate of the quantum
computer occurs. Additionally, the decoder must be resource efficient to enable
scaling to larger systems and potentially operate in cryogenic environments.
Here we introduce the Collision Clustering decoder, which overcomes both
challenges. We implement our decoder on both an FPGA and ASIC, the latter
ultimately being necessary for any cost-effective scalable solution. We
simulate a logical memory experiment on large instances of the leading quantum
error correction scheme, the surface code, assuming a circuit-level noise
model. The FPGA decoding frequency is above a megahertz, a stringent
requirement on decoders needed for e.g. superconducting quantum computers. To
decode an 881 qubit surface code it uses only $4.5\%$ of the available logical
computation elements. The ASIC decoding frequency is also above a megahertz on
a 1057 qubit surface code, and occupies 0.06 mm$^2$ area and consumes 8 mW of
power. Our decoder is optimised to be both highly performant and resource
efficient, while its implementation on hardware constitutes a viable path to
practically realising fault-tolerant quantum computers.
- Abstract(参考訳): 量子コンピュータは、従来のアプローチで現在難解な計算問題を解くことを約束する。
これは、量子コンピュータに必然的に存在するノイズが大規模に効率的に管理できる場合にのみ達成できる。
このプロセスの重要なコンポーネントは、システム内で発生するエラーを診断する古典的なデコーダである。
デコーダが十分に高速に動作しない場合、量子コンピュータの論理クロックレートが指数的に低下する。
さらに、デコーダは大規模システムへのスケーリングを可能にし、低温環境での運用を可能にするためにリソース効率が良い必要がある。
ここでは、両方の課題を克服するCollision Clusteringデコーダを紹介します。
私たちはfpgaとasicの両方でデコーダを実装しています。
我々は,回路レベルのノイズモデルを想定した主要な量子誤り訂正方式である表面符号の大規模インスタンス上での論理記憶実験をシミュレートする。
fpgaの復号周波数はメガヘルツを超え、例えば超伝導量子コンピュータに必要なデコーダの厳密な要求である。
881 qubit曲面コードをデコードするには、利用可能な論理計算要素の 4.5 % しか使用しない。
ASIC復号周波数は1057キュービットの表面符号のメガヘルツよりも高く、0.06 mm$^2$領域を占め、8mWの電力を消費する。
我々のデコーダは高性能かつ資源効率の両面に最適化されており、ハードウェア上での実装はフォールトトレラントな量子コンピュータの実現に有効である。
関連論文リスト
- Local Clustering Decoder: a fast and adaptive hardware decoder for the surface code [0.0]
本稿では,リアルタイムデコードシステムの精度と速度要件を同時に達成するソリューションとしてローカルクラスタリングデコーダを紹介する。
我々のデコーダはFPGA上に実装され、ハードウェア並列性を利用して、最速のキュービットタイプにペースを保ちます。
通常の非適応復号法と比較して4倍少ない物理量子ビットを持つ100万個の誤りのない量子演算を可能にする。
論文 参考訳(メタデータ) (2024-11-15T16:43:59Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
超伝導量子プロセッサに組み込まれたスケーラブルFPGAデコーダを用いて低遅延フィードバックを示す。
復号ラウンド数が増加するにつれて、論理誤差の抑制が観察される。
この作業でデコーダのスループットとレイテンシが発達し、デバイスの継続的な改善と相まって、次世代の実験がアンロックされた。
論文 参考訳(メタデータ) (2024-10-07T17:07:18Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
量子ゲート理論の基本的な前提は、量子ゲートはフォールトトレランスの誤差閾値を超えることなく、大きなプロセッサにスケールできるということである。
ここでは、このような問題を克服できる戦略について報告する。
我々は、68個の周波数可変ビットの周波数軌跡をコレオグラフィーして、超伝導エラー中に単一量子ビットを実行することを示した。
論文 参考訳(メタデータ) (2023-08-04T13:39:46Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
リアルタイム量子計算は、ノイズの多い量子ハードウェアによって生成されたデータのストリームから論理的な結果を取り出すことができる復号アルゴリズムを必要とする。
本稿では,デコーディングの精度を犠牲にすることなく,最小限の追加通信でこの問題に対処できるモジュールデコーディングを提案する。
本稿では,格子探索型耐故障ブロックのモジュールデコーディングの具体例であるエッジ頂点分解について紹介する。
論文 参考訳(メタデータ) (2023-03-08T19:26:10Z) - Real-Time Decoding for Fault-Tolerant Quantum Computing: Progress,
Challenges and Outlook [0.8066496490637088]
リアルタイムデコーダの実装に直面する重要な課題をいくつか取り上げる。
今後の開発を展望し、リアルタイムデコード分野のロードマップを提供していく。
論文 参考訳(メタデータ) (2023-02-28T19:51:03Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - NEO-QEC: Neural Network Enhanced Online Superconducting Decoder for
Surface Codes [2.2749157557381245]
本稿では, SCと格子手術 (LS) の動作を, 精度, 高速, 低消費電力デコーダで復号化可能なNN型デコーダを提案する。
単一論理量子ビット保護のための量子誤差シミュレータによるデコーダの性能評価と,最大13個のコードによるLSの最小動作について検討した。
論文 参考訳(メタデータ) (2022-08-11T11:37:09Z) - QECOOL: On-Line Quantum Error Correction with a Superconducting Decoder
for Surface Code [2.2749157557381245]
復号アルゴリズムに関連する表面符号(SC)は、最も有望な量子誤り訂正(QEC)法の一つである。
本稿では,超伝導デジタル回路を用いたオンラインQECアルゴリズムとそのハードウェア実装を提案する。
このデコーダは、符号5〜13の量子エラーシミュレータ上でシミュレートされ、精度1.0%の閾値が得られる。
論文 参考訳(メタデータ) (2021-03-26T01:51:15Z) - A Scalable Decoder Micro-architecture for Fault-Tolerant Quantum
Computing [2.617437465051793]
We design a decoder micro-architecture for the Union-Find decoding algorithm。
量子コンピュータの全ての論理量子ビットに対して、誤り訂正を同時に行うために必要な復号ハードウェアの量を最適化する。
論文 参考訳(メタデータ) (2020-01-18T04:44:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。