REVERSIM: A Game-Based Environment to Study Human Aspects in Hardware Reverse Engineering
- URL: http://arxiv.org/abs/2309.05740v2
- Date: Sun, 24 Mar 2024 07:49:17 GMT
- Title: REVERSIM: A Game-Based Environment to Study Human Aspects in Hardware Reverse Engineering
- Authors: Steffen Becker, René Walendy, Markus Weber, Carina Wiesen, Nikol Rummel, Christof Paar,
- Abstract summary: Hardware Reverse Engineering (HRE) is a technique for analyzing Integrated Circuits (ICs)
We have developed REVERSIM, a game-based environment that mimics realistic HRE subprocesses and can integrate standardized cognitive tests.
REVERSIM enables quantitative studies with easier-to-recruit non-experts to uncover cognitive factors relevant to HRE.
- Score: 5.468342362048975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hardware Reverse Engineering (HRE) is a technique for analyzing Integrated Circuits (ICs). Experts employ HRE for security-critical tasks, such as detecting Trojans or intellectual property violations. They rely not only on their experience and customized tools but also on their cognitive abilities. Conducting controlled experiments to assess the cognitive processes involved in HRE can open new avenues for hardware protection. However, HRE experts are largely unavailable for empirical research in real-world settings. To address this challenge, we have developed REVERSIM, a game-based environment that mimics realistic HRE subprocesses and can integrate standardized cognitive tests. REVERSIM enables quantitative studies with easier-to-recruit non-experts to uncover cognitive factors relevant to HRE, which can subsequently be validated with small expert samples. To evaluate the design of REVERSIM, the minimum requirements for successful participation, and its measurement capabilities, we conducted two studies: First, we performed semi-structured interviews with 14 professionals and researchers from the HRE domain, who attested to the comparability of REVERSIM to real-world HRE problems. Second, we conducted an online user study with 109 participants, demonstrating that they could engage in REVERSIM with low domain-specific prior knowledge. We provide refined screening criteria, derive fine-grained performance metrics, and successfully perform a cognitive test for mental speed in REVERSIM, thus contributing an important piece of the puzzle for the development of innovative hardware protection mechanisms.
Related papers
- CRMArena: Understanding the Capacity of LLM Agents to Perform Professional CRM Tasks in Realistic Environments [90.29937153770835]
We introduce CRMArena, a benchmark designed to evaluate AI agents on realistic tasks grounded in professional work environments.
We show that state-of-the-art LLM agents succeed in less than 40% of the tasks with ReAct prompting, and less than 55% even with function-calling abilities.
Our findings highlight the need for enhanced agent capabilities in function-calling and rule-following to be deployed in real-world work environments.
arXiv Detail & Related papers (2024-11-04T17:30:51Z) - AAAR-1.0: Assessing AI's Potential to Assist Research [34.88341605349765]
We introduce AAAR-1.0, a benchmark dataset designed to evaluate large language models (LLMs) performance in three fundamental, expertise-intensive research tasks.
AAAR-1.0 differs from prior benchmarks in two key ways: first, it is explicitly research-oriented, with tasks requiring deep domain expertise; second, it is researcher-oriented, mirroring the primary activities that researchers engage in on a daily basis.
arXiv Detail & Related papers (2024-10-29T17:58:29Z) - O1 Replication Journey: A Strategic Progress Report -- Part 1 [52.062216849476776]
This paper introduces a pioneering approach to artificial intelligence research, embodied in our O1 Replication Journey.
Our methodology addresses critical challenges in modern AI research, including the insularity of prolonged team-based projects.
We propose the journey learning paradigm, which encourages models to learn not just shortcuts, but the complete exploration process.
arXiv Detail & Related papers (2024-10-08T15:13:01Z) - ExACT: Teaching AI Agents to Explore with Reflective-MCTS and Exploratory Learning [78.42927884000673]
ExACT is an approach to combine test-time search and self-learning to build o1-like models for agentic applications.
We first introduce Reflective Monte Carlo Tree Search (R-MCTS), a novel test time algorithm designed to enhance AI agents' ability to explore decision space on the fly.
Next, we introduce Exploratory Learning, a novel learning strategy to teach agents to search at inference time without relying on any external search algorithms.
arXiv Detail & Related papers (2024-10-02T21:42:35Z) - CIPHER: Cybersecurity Intelligent Penetration-testing Helper for Ethical Researcher [1.6652242654250329]
We develop CIPHER (Cybersecurity Intelligent Penetration-testing Helper for Ethical Researchers), a large language model specifically trained to assist in penetration testing tasks.
We trained CIPHER using over 300 high-quality write-ups of vulnerable machines, hacking techniques, and documentation of open-source penetration testing tools.
We introduce the Findings, Action, Reasoning, and Results (FARR) Flow augmentation, a novel method to augment penetration testing write-ups to establish a fully automated pentesting simulation benchmark.
arXiv Detail & Related papers (2024-08-21T14:24:04Z) - EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EAIRiskBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - DISCOVERYWORLD: A Virtual Environment for Developing and Evaluating Automated Scientific Discovery Agents [49.74065769505137]
We introduce DISCOVERYWORLD, the first virtual environment for developing and benchmarking an agent's ability to perform complete cycles of novel scientific discovery.
It includes 120 different challenge tasks spanning eight topics each with three levels of difficulty and several parametric variations.
We find that strong baseline agents, that perform well in prior published environments, struggle on most DISCOVERYWORLD tasks.
arXiv Detail & Related papers (2024-06-10T20:08:44Z) - Exploring Emerging Technologies for Requirements Elicitation Interview
Training: Empirical Assessment of Robotic and Virtual Tutors [0.0]
We propose an architecture for Requirements Elicitation Interview Training system based on emerging educational technologies.
We demonstrate the applicability of REIT through two implementations: Ro with a physical robotic agent and Vo with a virtual voice-only agent.
arXiv Detail & Related papers (2023-04-28T20:03:48Z) - Automatic Intrinsic Reward Shaping for Exploration in Deep Reinforcement
Learning [55.2080971216584]
We present AIRS: Automatic Intrinsic Reward Shaping that intelligently and adaptively provides high-quality intrinsic rewards to enhance exploration in reinforcement learning (RL)
We develop an intrinsic reward toolkit to provide efficient and reliable implementations of diverse intrinsic reward approaches.
arXiv Detail & Related papers (2023-01-26T01:06:46Z) - Promoting the Acquisition of Hardware Reverse Engineering Skills [0.7487407411063094]
This research paper focuses on skill acquisition in Hardware Reverse Engineering (HRE)
Even though the scientific community and industry have a high demand for HRE experts, there is a lack of educational courses.
To investigate how novices acquire HRE skills in our course, we conducted two studies with students on different levels of prior knowledge.
arXiv Detail & Related papers (2021-05-28T10:45:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.