論文の概要: Implicit Neural Representation for MRI Parallel Imaging Reconstruction
- arxiv url: http://arxiv.org/abs/2309.06067v5
- Date: Tue, 12 Mar 2024 11:24:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 01:43:03.496654
- Title: Implicit Neural Representation for MRI Parallel Imaging Reconstruction
- Title(参考訳): MRI並列画像再構成のための入射神経表現法
- Authors: Hao Li, Yusheng Zhou, Jianan Liu, Xiling Liu, Tao Huang, and Zhihan Lv
- Abstract要約: 暗黙的ニューラル表現(INR)に基づく新しいMRI再構成法を提案する。
INRは、再構成された完全サンプリング画像を、ボクセル座標とアンダーサンプル画像の以前の特徴ベクトルの関数として表現する。
具体的には、異なるアンダーサンプリングスケールのMR画像からスケール非依存のボクセル特異な特徴を生成するためのスケール埋め込みエンコーダを提案する。
- 参考スコア(独自算出の注目度): 31.952891507137725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging (MRI) always suffers from long acquisition times.
Parallel imaging (PI) is one solution to reduce scan time by periodically
skipping certain K-space lines and then reconstructing high-quality images from
undersampled measurements. Recently, implicit neural representation (INR) has
emerged as a new deep learning method that represents an object as a continuous
function of spatial coordinates, and this function is normally parameterized by
a multilayer perceptron (MLP). In this paper, we propose a novel MRI PI
reconstruction method based on INR, which represents the reconstructed
fully-sampled images as the function of voxel coordinates and prior feature
vectors of undersampled images to overcome the generalization problem of INR.
Specifically, we introduce a scale-embedded encoder to produce
scale-independent voxel-specific features from MR images with different
undersampling scales and then concatenate with coordinate vectors to recover
fully-sampled MR images, thus achieving multiple scale reconstructions. The
performance of the proposed method was assessed by experimenting with publicly
available MRI datasets and was compared with other reconstruction methods. Our
quantitative evaluation demonstrates the superiority of the proposed method
over alternative reconstruction methods.
- Abstract(参考訳): 磁気共鳴画像(MRI)は常に長い取得時間に悩まされる。
並列イメージング(PI)は、特定のK空間線を周期的にスキップし、アンダーサンプリングされた測定から高品質な画像を再構成することでスキャン時間を短縮する1つの方法である。
近年,物体を空間座標の連続関数として表現する新しい深層学習法として暗黙的ニューラル表現(INR)が登場し,この関数は通常多層パーセプトロン(MLP)によってパラメータ化される。
本稿では,INRに基づく新しいMRI PI再構成手法を提案する。これは,再構成された完全サンプル画像をボクセル座標とアンダーサンプル画像の特徴ベクトルの関数として表現し,INRの一般化問題を克服する。
具体的には,異なるアンダーサンプリングスケールのMR画像からスケール非依存のボクセル特異な特徴を抽出し,座標ベクトルと結合して完全サンプリングされたMR画像の復元を行い,複数スケール再構成を実現する。
提案手法の性能は,公開されているMRIデータセットを用いて評価し,他の再構成手法と比較した。
提案手法が代替手法よりも優れていることを示す定量的評価を行った。
関連論文リスト
- Continuous K-space Recovery Network with Image Guidance for Fast MRI Reconstruction [5.910509015352437]
高速MRIは、アンダーサンプリングされたk空間から高品質な画像を復元することを目的としている。
既存の方法では、アンサンプされたデータをアーティファクトのないMRI画像にマッピングするために、ディープラーニングモデルを訓練する。
画像領域誘導を用いた暗黙的ニューラル表現の新しい視点から、連続的なk空間回復ネットワークを提案する。
論文 参考訳(メタデータ) (2024-11-18T04:54:04Z) - On the Foundation Model for Cardiac MRI Reconstruction [6.284878525302227]
本稿では,適応アンロール,チャネルシフト,パターンとコントラスト-プロンプト-UNetを用いた基礎モデルを提案する。
PCP-UNetは画像コントラストとサンプリングパターンプロンプトを備える。
論文 参考訳(メタデータ) (2024-11-15T18:15:56Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling [7.281993256973667]
本研究は,TC-KANReconと命名された,革新的な条件付き拡散モデルを提案する。
Multi-Free U-KAN (MF-UKAN) モジュールと動的クリッピング戦略が組み込まれている。
実験により,提案手法は定性評価と定量的評価の両方において,他のMRI再建法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-11T06:31:56Z) - Joint Edge Optimization Deep Unfolding Network for Accelerated MRI Reconstruction [3.9681863841849623]
我々はMR画像とエッジの両方に固有の個別正規化器を組み込むだけでなく、協調正規化器を強制してそれらの相関を効果的に確立するジョイントエッジ最適化モデルを構築した。
具体的には、エッジ情報を非エッジ確率マップで定義し、最適化プロセス中に画像再構成を誘導する。
一方、画像やエッジに関連するレギュレータは、それぞれ固有のアプリオリ情報を自動的に学習するために、深く展開するネットワークに組み込まれる。
論文 参考訳(メタデータ) (2024-05-09T05:51:33Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
本稿では,MRIの高速化による高画質画像の再構成を目的としたディープラーニング手法を提案する。
具体的には、畳み込みニューラルネットワーク(CNN)を用いて、エイリアス画像と元の画像の違いを学習する。
ダウンサンプリングされたk空間データの特異性を考慮すると、与えられたk空間データを効果的に活用する学習における損失関数に新しい用語を導入する。
論文 参考訳(メタデータ) (2020-01-13T19:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。