Thermodynamic entropy production in the dynamical Casimir effect
- URL: http://arxiv.org/abs/2309.07847v2
- Date: Thu, 16 Nov 2023 14:37:08 GMT
- Title: Thermodynamic entropy production in the dynamical Casimir effect
- Authors: Gustavo de Oliveira and Lucas C. C\'eleri
- Abstract summary: We study a quantum field confined within a one-dimensional ideal cavity.
The central question is how the thermodynamic entropy of the field evolves over time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper address the question of thermodynamic entropy production in the
context of the dynamical Casimir effect. Specifically, we study a scalar
quantum field confined within a one-dimensional ideal cavity subject to
time-varying boundary conditions dictated by an externally prescribed
trajectory of one of the cavity mirrors. The central question is how the
thermodynamic entropy of the field evolves over time. Utilizing an effective
Hamiltonian approach, we compute the entropy production and reveal that it
exhibits scaling behavior concerning the number of particles created in the
short-time limit. Furthermore, this approach elucidates the direct connection
between this entropy and the emergence of quantum coherence within the mode
basis of the field. In addition, by considering a distinct approach based on
the time evolution of Gaussian states we examine the long-time limit of entropy
production within a single mode of the field. This approach results in
establishing a connection between the thermodynamic entropy production in a
single field mode and the entanglement between that particular mode and all
other modes. Consequently, by employing two distinct approaches, we
comprehensively address both the short-term and long-term dynamics of the
system. Our results thus link the irreversible dynamics of the field, as
measured by entropy production and induced by the dynamical Casimir effect, to
two fundamental aspects of quantum mechanics: coherence and entanglement.
Related papers
- Quantum Thermodynamics of Open Quantum Systems: Nature of Thermal Fluctuations [0.0]
We investigate the thermodynamic behavior of open quantum systems through the Hamiltonian of Mean Force.
By analyzing both weak and strong coupling regimes, we uncover the impact of environmental interactions on quantum thermodynamic quantities.
arXiv Detail & Related papers (2024-07-31T13:18:06Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Growth of entanglement entropy under local projective measurements [0.0]
We show that local projective measurements induce a qualitative modification of the time-growth of the entanglement entropy.
In the stationary regime, the logarithmic behavior of the entanglement entropy do not survive in the thermodynamic limit.
We numerically show the existence of a single area-law phase for the entanglement entropy.
arXiv Detail & Related papers (2021-09-22T16:56:35Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Quantum corrections to the entropy in a driven quantum Brownian motion
model [2.28438857884398]
We study the von Neumann entropy of a particle undergoing quantum Brownian motion.
Our results bring important insights to the understanding of entropy in open quantum systems.
arXiv Detail & Related papers (2020-08-05T14:13:39Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z) - Wehrl entropy production rate across a dynamical quantum phase
transition [0.0]
The quench dynamics of many-body quantum systems may exhibit non-analyticities in the Loschmidt echo.
We show that critical quenches lead to a quasi-monotonic growth of the Wehrl entropy in time, combined with small oscillations.
The small oscillations imply negative entropy production rates and, therefore, signal the recurrences of the Loschmidt echo.
arXiv Detail & Related papers (2020-04-02T16:54:15Z) - Thermodynamics of Optical Bloch Equations [0.0]
We study the coherent exchange of energy between a quantum bit (qubit) and a quasi-resonant driving field in the presence of a thermal bath.
We coarse-grain the obtained expressions, using a methodology similar to the derivation of the dynamical master equation.
Our findings can be readily extended to larger open quantum systems.
arXiv Detail & Related papers (2020-01-22T14:37:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.