論文の概要: How Automated Market Makers Approach the Thin Market Problem in Cryptoeconomic Systems
- arxiv url: http://arxiv.org/abs/2309.12818v2
- Date: Thu, 28 Sep 2023 09:53:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 04:01:03.334515
- Title: How Automated Market Makers Approach the Thin Market Problem in Cryptoeconomic Systems
- Title(参考訳): 暗号システムにおける薄型市場問題への自動市場メーカのアプローチ
- Authors: Daniel Kirste, Niclas Kannengießer, Ricky Lamberty, Ali Sunyaev,
- Abstract要約: 自動市場メーカ(AMM)の適切な設計は、暗号システムの市場におけるデジタルトークンとして表される資産の継続的な取引を可能にするために不可欠である。
不適切な設計のAMMは、そのような市場が薄型市場問題(TMP)に悩まされる可能性があるため、暗号システムはその目的を達成できない可能性がある。
AMM設計特性を示すAMM分類法を開発した。
- 参考スコア(独自算出の注目度): 1.124958340749622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proper design of automated market makers (AMMs) is crucial to enable the continuous trading of assets represented as digital tokens on markets of cryptoeconomic systems. Improperly designed AMMs can make such markets suffer from the thin market problem (TMP), which can cause cryptoeconomic systems to fail their purposes. We developed an AMM taxonomy that showcases AMM design characteristics. Based on the AMM taxonomy, we devised AMM archetypes implementing principal solution approaches for the TMP. The main purpose of this article is to support practitioners and researchers in tackling the TMP through proper AMM designs.
- Abstract(参考訳): 自動市場メーカ(AMM)の適切な設計は、暗号システムの市場におけるデジタルトークンとして表される資産の継続的な取引を可能にするために不可欠である。
不適切な設計のAMMは、そのような市場が薄型市場問題(TMP)に悩まされる可能性があるため、暗号システムはその目的を達成できない可能性がある。
AMM設計特性を示すAMM分類法を開発した。
AMM分類に基づいて,TMPの主解法を実装したAMMアーチタイプを考案した。
本稿の主な目的は、適切なAMM設計を通じてTMPに取り組む実践者や研究者を支援することである。
関連論文リスト
- SILMM: Self-Improving Large Multimodal Models for Compositional Text-to-Image Generation [92.73405185996315]
大規模マルチモーダルモデル(LMM)は、マルチモーダル理解と生成において印象的な能力を示した。
マルチステップ生成のためのレイアウト計画や、人間のフィードバックやAIフィードバックからの学習など、既存のアプローチは、迅速なエンジニアリングに大きく依存している。
モデルに依存しない反復型自己フィードバックフレームワーク(SILMM)を導入し,LMMが有用でスケーラブルな自己改善を実現し,テキスト画像のアライメントを最適化する。
論文 参考訳(メタデータ) (2024-12-08T05:28:08Z) - RediSwap: MEV Redistribution Mechanism for CFMMs [6.475701705193783]
アプリケーションレベルでの最大抽出可能価値(MEV)の取得と,ユーザおよび流動性プロバイダ間での返金を目的とした,新たなAMMであるRediSwapを紹介した。
RediSwapの中核となるのは、AMMプール内の調停機会を管理するMEV再分配機構である。
我々は、我々のメカニズムがインセンティブに適合し、シビルに耐性があることを証明し、仲裁者が容易に参加できることを証明した。
論文 参考訳(メタデータ) (2024-10-24T05:11:41Z) - A Multi-agent Market Model Can Explain the Impact of AI Traders in Financial Markets -- A New Microfoundations of GARCH model [3.655221783356311]
本稿では,ノイズトレーダー,基本トレーダー,AIトレーダーの3種類のエージェントを組み込んだマルチエージェント市場モデルを提案する。
我々は,このモデルをマルチエージェントシミュレーションにより検証し,金融市場のスタイル化された事実を再現する能力を確認した。
論文 参考訳(メタデータ) (2024-09-19T07:14:13Z) - LMM-PCQA: Assisting Point Cloud Quality Assessment with LMM [83.98966702271576]
本研究の目的は,大規模マルチモダリティモデル(LMM)に対するポイントクラウド品質評価(PCQA)の知識付与の可能性を検討することである。
品質ラベルを微調整段階のテキスト記述に変換することにより、LMMは点雲の2次元投影から品質評価ロジットを導出することができる。
提案手法の有効性を実証し,PCQAへのLMMの新たな統合を実証した。
論文 参考訳(メタデータ) (2024-04-28T14:47:09Z) - Modelling crypto markets by multi-agent reinforcement learning [0.0]
本研究では,暗号市場を模擬したマルチエージェント強化学習(MARL)モデルを提案する。
2018年から2022年にかけて継続的に取引された暗号通貨の1日当たり終値153ドルに調整されている。
論文 参考訳(メタデータ) (2024-02-16T16:28:58Z) - QLAMMP: A Q-Learning Agent for Optimizing Fees on Automated Market
Making Protocols [5.672898304129217]
本稿では,所定のAMMプロトコルの最適料金率を学習し,係数を活用するQ-Learning Agent for Market Making Protocols (QLAMMP) を開発する。
QLAMMPは、すべてのシミュレートされたテスト条件下で、その静的な性能を一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2022-11-28T00:30:45Z) - Predictive Crypto-Asset Automated Market Making Architecture for
Decentralized Finance using Deep Reinforcement Learning [0.0]
本研究は、オンチェーンの保持と決済機能を備えた引用駆動型予測自動市場メーカー(AMM)プラットフォームを提案する。
提案アーキテクチャは,暗号AMMプロトコルであるUnixwap V3への拡張であり,分散とすべり損失の低減を目的とした新たな市場均衡価格を利用する。
論文 参考訳(メタデータ) (2022-09-28T01:13:22Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - BERTifying the Hidden Markov Model for Multi-Source Weakly Supervised
Named Entity Recognition [57.2201011783393]
条件付き隠れマルコフモデル(CHMM)
CHMMは、入力トークンのBERT埋め込みからトークン単位の遷移と放出確率を予測する。
BERTベースのNERモデルを微調整し、ラベルをCHMMで推論する。
論文 参考訳(メタデータ) (2021-05-26T21:18:48Z) - Families In Wild Multimedia: A Multimodal Database for Recognizing
Kinship [63.27052967981546]
マルチタスク MM キンシップデータセットを初めて公開する。
FIW MMを構築するために,データを自動収集,注釈付け,作成する機構を開発した。
結果は、改善の異なる領域で将来の研究を刺激するエッジケースを強調します。
論文 参考訳(メタデータ) (2020-07-28T22:36:57Z) - Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized Machine Learning [66.18202188565922]
我々はQGADMM(QGADMM)という通信効率の高い分散機械学習(ML)アルゴリズムを提案する。
我々は,凸関数に対するQGADMMの収束性を証明しつつ,モデル化レベルとその確率を適応的に調整する新しい量子化法を開発した。
論文 参考訳(メタデータ) (2019-10-23T10:47:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。