論文の概要: Ensemble Differential Evolution with Simulation-Based Hybridization and
Self-Adaptation for Inventory Management Under Uncertainty
- arxiv url: http://arxiv.org/abs/2309.12852v1
- Date: Fri, 22 Sep 2023 13:25:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-25 14:29:52.336452
- Title: Ensemble Differential Evolution with Simulation-Based Hybridization and
Self-Adaptation for Inventory Management Under Uncertainty
- Title(参考訳): 不確実性下における在庫管理のためのシミュレーションベースハイブリダイゼーションと自己適応によるアンサンブル微分進化
- Authors: Sarit Maitra, Vivek Mishra, Sukanya Kundu
- Abstract要約: 本研究は,インベントリーマネジメント(IM)のためのシミュラオンベースハイブリッド化と自己適応(EDESH-SA)アプローチを用いたアンサンブル微分進化法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study proposes an Ensemble Differential Evolution with Simula-tion-Based
Hybridization and Self-Adaptation (EDESH-SA) approach for inven-tory management
(IM) under uncertainty. In this study, DE with multiple runs is combined with a
simulation-based hybridization method that includes a self-adaptive mechanism
that dynamically alters mutation and crossover rates based on the success or
failure of each iteration. Due to its adaptability, the algorithm is able to
handle the complexity and uncertainty present in IM. Utilizing Monte Carlo
Simulation (MCS), the continuous review (CR) inventory strategy is ex-amined
while accounting for stochasticity and various demand scenarios. This
simulation-based approach enables a realistic assessment of the proposed
algo-rithm's applicability in resolving the challenges faced by IM in practical
settings. The empirical findings demonstrate the potential of the proposed
method to im-prove the financial performance of IM and optimize large search
spaces. The study makes use of performance testing with the Ackley function and
Sensitivity Analysis with Perturbations to investigate how changes in variables
affect the objective value. This analysis provides valuable insights into the
behavior and robustness of the algorithm.
- Abstract(参考訳): 本研究は,インベントリーマネジメント(IM)のためのシミュラオンベースハイブリッド化と自己適応(EDESH-SA)アプローチを用いたアンサンブル微分進化法を提案する。
本研究では,複数回実行したDEとシミュレーションに基づくハイブリダイゼーション手法を組み合わせることで,各イテレーションの成功や失敗に基づいて動的に突然変異や交叉率を変化させる自己適応機構を含む。
適応性のため、このアルゴリズムはIMに存在する複雑さと不確実性を扱うことができる。
モンテカルロシミュレーション(MCS)を用いることで、確率性や様々な需要シナリオを考慮した継続的レビュー(CR)在庫戦略を除外する。
このシミュレーションに基づくアプローチは,IMが直面する課題を現実的に解決する上で,提案するアルゴリズムの適用性を現実的に評価することを可能にする。
実験により,IMの財務性能を向上し,大規模検索空間を最適化する手法の可能性を示す。
本研究は, ackley関数によるパフォーマンステストと摂動による感度解析を用いて, 変数の変化が客観的値に与える影響を検討する。
この分析は、アルゴリズムの振る舞いと堅牢性に関する貴重な洞察を提供する。
関連論文リスト
- Cooperative Resilience in Artificial Intelligence Multiagent Systems [2.0608564715600273]
本稿では, 協調レジリエンスの明確な定義とその定量化手法を提案する。
その結果は、集団システムが破壊に直面してどのように準備し、抵抗し、回復し、幸福を維持し、変革するかを分析する上で、レジリエンス指標の重要な役割を強調している。
論文 参考訳(メタデータ) (2024-09-20T03:28:48Z) - An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems [0.0]
効率的な確率的選択に基づく制約付き多目的EAをPSCMOEAと呼ぶ。
a) 評価された解の実現可能性と収束状態に基づく適応探索境界同定スキームのような新しい要素を含む。
ECMOPを模擬する低評価予算を用いて, 幅広い制約付き問題に対して, 数値実験を行った。
論文 参考訳(メタデータ) (2024-05-22T02:32:58Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Multiple Independent DE Optimizations to Tackle Uncertainty and
Variability in Demand in Inventory Management [0.0]
本研究の目的は、不確実な需要パターンの文脈において、在庫コストを最小限に抑えるための最も効果的な戦略を明らかにすることである。
最適な解を見つけるために、この研究はメタヒューリスティックなアプローチに焦点を当て、複数のアルゴリズムを比較する。
論文 参考訳(メタデータ) (2023-09-22T13:15:02Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
このアルゴリズムは、異なるモードの適応的統合の原理における不確かさを効率的に推定し、信頼できる回帰結果を生成する。
実世界のデータと実世界のデータの両方に対する実験結果から,多モード回帰タスクにおける本手法の有効性と信頼性が示された。
論文 参考訳(メタデータ) (2021-11-11T14:28:12Z) - A Multi-objective Evolutionary Algorithm for EEG Inverse Problem [0.0]
本稿では,脳波逆問題に対する多目的アプローチを提案する。
この問題の特徴から、この代替案にはそれを解決するための進化戦略が含まれていた。
その結果、分散ソリューションを推定するために、MOEAAR(Anatomical Restrictions)に基づく多目的進化的アルゴリズムが得られた。
論文 参考訳(メタデータ) (2021-07-21T19:37:27Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - RDMSim: An Exemplar for Evaluation and Comparison of Decision-Making
Techniques for Self-Adaptation [1.846852980615761]
RDMSimは、研究者が自己適応のための意思決定技術を評価および比較できるようにする。
模範者の焦点は、リモートデータミラーリングに関連するドメインの問題である。
論文 参考訳(メタデータ) (2021-05-05T11:03:16Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
マルコフ決定過程としてのAMRの新規な定式化を提案し,シミュレーションから直接改良政策を訓練するために深部強化学習を適用した。
これらのポリシーアーキテクチャのモデルサイズはメッシュサイズに依存しないため、任意に大きく複雑なシミュレーションにスケールします。
論文 参考訳(メタデータ) (2021-03-01T22:55:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。