論文の概要: NeRRF: 3D Reconstruction and View Synthesis for Transparent and Specular
Objects with Neural Refractive-Reflective Fields
- arxiv url: http://arxiv.org/abs/2309.13039v1
- Date: Fri, 22 Sep 2023 17:59:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-25 13:30:12.951485
- Title: NeRRF: 3D Reconstruction and View Synthesis for Transparent and Specular
Objects with Neural Refractive-Reflective Fields
- Title(参考訳): NeRRF: ニューラル屈折場を有する透明・特異物体の3次元再構成とビュー合成
- Authors: Xiaoxue Chen, Junchen Liu, Hao Zhao, Guyue Zhou, Ya-Qin Zhang
- Abstract要約: ニューラル放射場(NeRF)に屈折反射場を導入する
NeRFは直線線を使用し、屈折や反射によって引き起こされる複雑な光路の変化に対処できない。
本稿では,効果的かつ効果的なアンチエイリアスを実現するための仮想コーンスーパーサンプリング手法を提案する。
- 参考スコア(独自算出の注目度): 23.099784003061618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural radiance fields (NeRF) have revolutionized the field of image-based
view synthesis. However, NeRF uses straight rays and fails to deal with
complicated light path changes caused by refraction and reflection. This
prevents NeRF from successfully synthesizing transparent or specular objects,
which are ubiquitous in real-world robotics and A/VR applications. In this
paper, we introduce the refractive-reflective field. Taking the object
silhouette as input, we first utilize marching tetrahedra with a progressive
encoding to reconstruct the geometry of non-Lambertian objects and then model
refraction and reflection effects of the object in a unified framework using
Fresnel terms. Meanwhile, to achieve efficient and effective anti-aliasing, we
propose a virtual cone supersampling technique. We benchmark our method on
different shapes, backgrounds and Fresnel terms on both real-world and
synthetic datasets. We also qualitatively and quantitatively benchmark the
rendering results of various editing applications, including material editing,
object replacement/insertion, and environment illumination estimation. Codes
and data are publicly available at https://github.com/dawning77/NeRRF.
- Abstract(参考訳): ニューラル放射場(NeRF)は画像ベースビュー合成の分野に革命をもたらした。
しかし、NeRFは直線線を使用し、屈折や反射によって引き起こされる複雑な光路の変化に対処できない。
これにより、NeRFは、現実世界のロボティクスやA/VRアプリケーションにおいてユビキタスである透明またはスペキュラオブジェクトの合成に成功しない。
本稿では屈折反射場について紹介する。
対象シルエットを入力として、まずプログレッシブエンコーディングによるマーチング・テトラヘドラを用いて、非ランベルト的対象の幾何学を再構成し、フレネル項を用いた統一的な枠組みで物体の屈折と反射効果をモデル化する。
一方,効果的なアンチエイリアシングを実現するために,仮想コーンスーパーサンプリング手法を提案する。
本手法は,実世界と合成データの両方において異なる形状,背景,フレネル項で評価する。
また, 材料編集, オブジェクト置換・挿入, 環境照明推定など, 様々な編集アプリケーションのレンダリング結果を質的に定量的に評価する。
コードとデータはhttps://github.com/dawning77/NeRRFで公開されている。
関連論文リスト
- Relighting Scenes with Object Insertions in Neural Radiance Fields [24.18050535794117]
本研究では,物体のNeRFをシーンのNeRFに挿入するための新しいNeRFパイプラインを提案する。
提案手法は,広範囲な実験評価において,現実的な照明効果を実現する。
論文 参考訳(メタデータ) (2024-06-21T00:58:58Z) - NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
最近の研究は、遠方の環境照明の詳細な明細な外観を描画するNeRFの能力を改善しているが、近い内容の一貫した反射を合成することはできない。
我々はこれらの問題をレイトレーシングに基づくアプローチで解決する。
このモデルでは、それぞれのカメラ線に沿った点における視界依存放射率を求めるために高価なニューラルネットワークをクエリする代わりに、これらの点から光を流し、NeRF表現を通して特徴ベクトルを描画します。
論文 参考訳(メタデータ) (2024-05-23T17:59:57Z) - Taming Latent Diffusion Model for Neural Radiance Field Inpainting [63.297262813285265]
ニューラル・ラジアンス・フィールド(NeRF)は多視点画像からの3次元再構成の表現である。
本研究では,シーンごとのカスタマイズによる拡散モデルの傾向の緩和と,マスキングトレーニングによるテクスチャシフトの緩和を提案する。
我々のフレームワークは、様々な現実世界のシーンに最先端のNeRF塗装結果をもたらす。
論文 参考訳(メタデータ) (2024-04-15T17:59:57Z) - Inverse Rendering of Glossy Objects via the Neural Plenoptic Function and Radiance Fields [45.64333510966844]
逆レンダリングは、オブジェクトの幾何学と材料の両方を復元することを目的としている。
我々は、NeRFとレイトレーシングに基づく新しい5次元ニューラルプレノプティクス関数(NeP)を提案する。
本手法は, 近くの物体からの複雑な光の相互作用により, 難解な光沢のある物体の高忠実な形状・材料を再構成することができる。
論文 参考訳(メタデータ) (2024-03-24T16:34:47Z) - Multi-Space Neural Radiance Fields [74.46513422075438]
既存のニューラルレージアンス場(NeRF)法は反射物体の存在に悩まされている。
並列部分空間における特徴場の群を用いてシーンを表現するマルチスペースニューラルレイディアンス場(MS-NeRF)を提案する。
提案手法は,高品質シーンのレンダリングにおいて,既存の単一空間NeRF法よりも優れていた。
論文 参考訳(メタデータ) (2023-05-07T13:11:07Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
本稿では,大都市におけるシーン形状,空間変化材料,HDR照明を,任意の深さで描画したRGB画像の集合から共同で再構成できる新しい逆レンダリングフレームワークを提案する。
具体的には、第1の光線を考慮に入れ、第2の光線をモデリングするために、明示的なメッシュ(基礎となるニューラルネットワークから再構成)を用いて、キャストシャドウのような高次照明効果を発生させる。
論文 参考訳(メタデータ) (2023-04-06T17:51:54Z) - NEMTO: Neural Environment Matting for Novel View and Relighting Synthesis of Transparent Objects [28.62468618676557]
我々は3次元透明物体をモデル化する最初のエンドツーエンドニューラルネットワークパイプラインであるNEMTOを提案する。
透明物体の2次元像を入力として, 高品質な新規ビューと光合成が可能となる。
論文 参考訳(メタデータ) (2023-03-21T15:50:08Z) - NeRFactor: Neural Factorization of Shape and Reflectance Under an
Unknown Illumination [60.89737319987051]
照明条件が不明な物体の多視点像から物体の形状と空間的反射率を復元する問題に対処する。
これにより、任意の環境照明下でのオブジェクトの新たなビューのレンダリングや、オブジェクトの材料特性の編集が可能になる。
論文 参考訳(メタデータ) (2021-06-03T16:18:01Z) - iNeRF: Inverting Neural Radiance Fields for Pose Estimation [68.91325516370013]
Neural RadianceField(NeRF)を「反転」してメッシュフリーポーズ推定を行うフレームワークiNeRFを紹介します。
NeRFはビュー合成のタスクに極めて有効であることが示されている。
論文 参考訳(メタデータ) (2020-12-10T18:36:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。