論文の概要: Forecasting Treatment Response with Deep Pharmacokinetic Encoders
- arxiv url: http://arxiv.org/abs/2309.13135v7
- Date: Sat, 02 Nov 2024 22:34:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:26:11.193542
- Title: Forecasting Treatment Response with Deep Pharmacokinetic Encoders
- Title(参考訳): 深部薬物動態エンコーダによる予測処理応答
- Authors: Willa Potosnak, Cristian Challu, Kin Gutierrez Olivares, Keith Dufendach, Artur Dubrawski,
- Abstract要約: 本稿では,患者固有の治療効果の深層学習モデルを示すハイブリッドグローバルローカルアーキテクチャとPKエンコーダを提案する。
本研究は,血糖予測タスクにおける精度向上のためのアプローチの有効性を示す。
- 参考スコア(独自算出の注目度): 14.900236106367167
- License:
- Abstract: Forecasting healthcare time series data is vital for early detection of adverse outcomes and patient monitoring. However, forecasting is challenging in practice due to variable medication administration and unique pharmacokinetic (PK) properties for each patient. To address these challenges, we propose a novel hybrid global-local architecture and a PK encoder that informs deep learning models of patient-specific treatment effects. We showcase the efficacy of our approach in achieving significant accuracy gains for a blood glucose forecasting task using both realistically simulated and real-world data. Our hybrid global-local architecture improves over patient-specific models by 15.8% on average. Additionally, our PK encoder surpasses baselines by up to 16.4% on simulated data and 4.9% on real-world data for individual patients during critical events of severely high and low glucose levels.
- Abstract(参考訳): 医療時系列データの予測は、副作用の早期発見と患者のモニタリングに不可欠である。
しかし,各患者に対する変動薬物投与と独自の薬物動態(PK)特性により,実際は予測が困難である。
これらの課題に対処するために,患者固有の治療効果の深層学習モデルを示すハイブリッドグローバルローカルアーキテクチャとPKエンコーダを提案する。
現実的にシミュレーションされた実世界データと実世界データの両方を用いて, 血糖予測タスクにおいて, 精度の高い精度向上を実現するためのアプローチの有効性を実証した。
我々のハイブリッドグローバルローカルアーキテクチャは、患者固有のモデルよりも平均15.8%改善している。
さらに、我々のPKエンコーダは、非常に高い血糖値と低い血糖値の臨界事象において、シミュレーションデータで最大16.4%、実際の患者のデータで4.9%のベースラインを超えている。
関連論文リスト
- Zero-shot generation of synthetic neurosurgical data with large language models [0.7373617024876725]
本研究の目的は,大言語モデル(LLM, GPT-4o)を用いた人工神経外科データのゼロショット生成能力を評価することである。
GPT-4oで合成されたデータは、小さなサンプルサイズで臨床データを効果的に増強し、神経外科的結果を予測するためのMLモデルを訓練することができる。
論文 参考訳(メタデータ) (2025-02-13T18:21:15Z) - Pre-Ictal Seizure Prediction Using Personalized Deep Learning [0.0]
世界中で約2300万ないし30%のてんかん患者が薬剤抵抗性てんかん(DRE)を患っている
発作発生の予測不可能さは、安全上の問題や社会的懸念を引き起こし、DRE患者のライフスタイルを制限している。
本研究の目的は、開始から最大2時間前に発作を予測するための改良された技術と方法を使用することであった。
論文 参考訳(メタデータ) (2024-10-07T21:04:41Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - Integrated Convolutional and Recurrent Neural Networks for Health Risk
Prediction using Patient Journey Data with Many Missing Values [9.418011774179794]
本稿では,統合畳み込みニューラルネットワークとリカレントニューラルネットワークを用いたEMH患者旅行データモデリングのためのエンドツーエンドアプローチを提案する。
本モデルでは,各患者旅行における長期的・短期的時間的パターンを抽出し,インパルスデータ生成を伴わずに,高レベルのEHRデータの欠落を効果的に処理することができる。
論文 参考訳(メタデータ) (2022-11-11T07:36:18Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
本稿では,特定の患者に限られた発作サンプルから迅速に適応できるパーソナライズされた発作検出・分類フレームワークを提案する。
トレーニング患者の集合からグローバルモデルを学ぶメタGNNベースの分類器を訓練する。
本手法は, 未確認患者20回に限って, 精度82.7%, F1スコア82.08%を達成し, ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-11-01T14:12:58Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Real-time Prediction for Mechanical Ventilation in COVID-19 Patients
using A Multi-task Gaussian Process Multi-objective Self-attention Network [9.287068570192057]
本報告では, 院内感染患者の機械的換気を要す確率を予測できるロバスト・イン・タイム・予測器を提案する。
新型コロナウイルス患者のリスク予測の課題は、臨床現場で観察された患者のバイタルや検査室の大きなばらつきと不規則なサンプリングにある。
予測タスクを多目的学習フレームワークに設定し、すべての時点におけるリスクスコアを完全に最適化する。
論文 参考訳(メタデータ) (2021-02-01T20:35:22Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
本研究は, 実世界の患者データから情報を最適に抽出する作業に対処する。
本研究では,患者軌跡モデリングに適した機械学習手法を用いることで,患者の障害進行を2年間の地平線で予測できることを示す。
文献で利用可能なモデルと比較して、この研究はMS病の進行予測に最も完全な患者履歴を使用する。
論文 参考訳(メタデータ) (2020-11-09T20:48:00Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。