論文の概要: Free Discontinuity Regression: With an Application to the Economic Effects of Internet Shutdowns
- arxiv url: http://arxiv.org/abs/2309.14630v3
- Date: Thu, 08 May 2025 15:35:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.466406
- Title: Free Discontinuity Regression: With an Application to the Economic Effects of Internet Shutdowns
- Title(参考訳): 自由不連続回帰--インターネット閉鎖の経済効果への応用
- Authors: Florian Gunsilius, David Van Dijcke,
- Abstract要約: 完全非圧縮推定器であるFree Discontinuity Regression (FDR)を紹介する。
回帰面を滑らかにし、連続した領域に分割し、ジャンプの正確な位置と大きさを確実に回収する。
インドのインターネット閉鎖にFDRを適用すると、推定された閉鎖境界周辺の経済活動が25~35%減少することが明らかになった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sharp, multidimensional changepoints-abrupt shifts in a regression surface whose locations and magnitudes are unknown-arise in settings as varied as gene-expression profiling, financial covariance breaks, climate-regime detection, and urban socioeconomic mapping. Despite their prevalence, there are no current approaches that jointly estimate the location and size of the discontinuity set in a one-shot approach with statistical guarantees. We therefore introduce Free Discontinuity Regression (FDR), a fully nonparametric estimator that simultaneously (i) smooths a regression surface, (ii) segments it into contiguous regions, and (iii) provably recovers the precise locations and sizes of its jumps. By extending a convex relaxation of the Mumford-Shah functional to random spatial sampling and correlated noise, FDR overcomes the fixed-grid and i.i.d. noise assumptions of classical image-segmentation approaches, thus enabling its application to real-world data of any dimension. This yields the first identification and uniform consistency results for multivariate jump surfaces: under mild SBV regularity, the estimated function, its discontinuity set, and all jump sizes converge to their true population counterparts. Hyperparameters are selected automatically from the data using Stein's Unbiased Risk Estimate, and large-scale simulations up to three dimensions validate the theoretical results and demonstrate good finite-sample performance. Applying FDR to an internet shutdown in India reveals a 25-35% reduction in economic activity around the estimated shutdown boundaries-much larger than previous estimates. By unifying smoothing, segmentation, and effect-size recovery in a general statistical setting, FDR turns free-discontinuity ideas into a practical tool with formal guarantees for modern multivariate data.
- Abstract(参考訳): シャープ,多次元変化点-位置と大きさが未知の回帰面における急激な変化は、遺伝子発現プロファイリング、財務的共分散の破れ、気候-レジームの検出、都市社会経済マッピングなどによって異なる。
その頻度にもかかわらず、統計的保証のある単発アプローチで設定された不連続性の位置とサイズを共同で推定する現在のアプローチは存在しない。
したがって、完全に非パラメトリックな推定器であるFDR(Free Discontinuity Regression)を同時に導入する。
(i)回帰面を滑らかにする。
(ii)連続した領域に区分し、
三 ジャンプの正確な位置及び大きさを確実に回収すること。
マンフォード・シャ関数の凸緩和をランダムな空間サンプリングと相関ノイズに拡張することにより、FDRは古典的な画像分離アプローチの固定格子と等分ノイズ仮定を克服し、任意の次元の実世界のデータに適用することができる。
軽度SBV正則性、推定関数、不連続性集合、およびすべてのジャンプサイズは真の集団のものと収束する。
ハイパーパラメータは、スタインのアンバイアスドリスク推定を用いてデータから自動的に選択され、最大3次元の大規模シミュレーションで理論結果が検証され、良好な有限サンプル性能を示す。
インドのインターネットの閉鎖にFDRを適用すると、前回の予想よりはるかに大きな閉鎖境界付近の経済活動が25~35%減少したことが判明した。
一般統計環境でのスムース化、セグメンテーション、効果サイズの回復を統一することにより、FDRは、自由不連続性の概念を現代の多変量データの形式的な保証を備えた実用的なツールに変える。
関連論文リスト
- Strategically Conservative Q-Learning [89.17906766703763]
オフライン強化学習(RL)は、RLの実用性を拡張するための魅力的なパラダイムである。
オフラインRLの最大の難しさは、オフ・オブ・ディストリビューション(OOD)アクションに遭遇する際の近似誤差の影響を緩和することである。
本稿では, 予測が容易かつ困難であるOODデータを識別する, SCQ(Strategical conservative Q-Learning) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-06T22:09:46Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Streaming Sparse Linear Regression [1.8707139489039097]
本稿では,データポイントが逐次到着したときのストリーミングデータを解析する新しいオンライン疎線形回帰フレームワークを提案する。
提案手法はメモリ効率が高く,厳密な制約付き凸性仮定を必要とする。
論文 参考訳(メタデータ) (2022-11-11T07:31:55Z) - Structural Sieves [0.0]
特に, あるディープネットワークは, 近似回帰関数に対する非パラメトリックシーブとして好適であることを示す。
このような制約は、潜在変数モデルの十分に柔軟なバージョンが、実際には未知の回帰関数を近似するために使用される場合、より簡単な方法で課されることを示す。
論文 参考訳(メタデータ) (2021-12-01T16:37:02Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
この研究は、NLPモデル更新における回帰エラーの定量化、低減、分析に重点を置いている。
回帰フリーモデル更新を制約付き最適化問題に定式化する。
モデルアンサンブルが回帰を減らす方法を実証的に分析します。
論文 参考訳(メタデータ) (2021-05-07T03:33:00Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z) - Online nonparametric regression with Sobolev kernels [99.12817345416846]
我々は、ソボレフ空間のクラス上の後悔の上限を$W_pbeta(mathcalX)$, $pgeq 2, beta>fracdp$ とする。
上界は minimax regret analysis で支えられ、$beta> fracd2$ または $p=infty$ の場合、これらの値は(本質的に)最適である。
論文 参考訳(メタデータ) (2021-02-06T15:05:14Z) - Ridge Regression Revisited: Debiasing, Thresholding and Bootstrap [4.142720557665472]
リッジレグレッションは、デバイアスとしきい値の設定の後、Lassoに対していくつかの利点をもたらすので、見直す価値があるかもしれない。
本稿では,デバイアス付き及びしきい値付きリッジ回帰法を定義し,一貫性とガウス近似の定理を証明した。
推定に加えて予測の問題も考慮し,予測間隔に合わせた新しいハイブリッドブートストラップアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-17T05:04:10Z) - New Insights into Learning with Correntropy Based Regression [3.066157114715031]
本研究では,コレントロピーに基づく回帰回帰が条件付きモード関数や条件付き平均関数に対して一定の条件下で頑健に働くことを示す。
また,条件付き平均関数を学習する際の新しい結果も提示する。
論文 参考訳(メタデータ) (2020-06-19T21:14:34Z) - Censored Quantile Regression Forest [81.9098291337097]
我々は、検閲に適応し、データが検閲を示さないときに量子スコアをもたらす新しい推定方程式を開発する。
提案手法は, パラメトリックなモデリング仮定を使わずに, 時間単位の定量を推定することができる。
論文 参考訳(メタデータ) (2020-01-08T23:20:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。