Statistical Analysis of Quantum State Learning Process in Quantum Neural
Networks
- URL: http://arxiv.org/abs/2309.14980v1
- Date: Tue, 26 Sep 2023 14:54:50 GMT
- Title: Statistical Analysis of Quantum State Learning Process in Quantum Neural
Networks
- Authors: Hao-kai Zhang, Chenghong Zhu, Mingrui Jing, Xin Wang
- Abstract summary: Quantum neural networks (QNNs) have been a promising framework in pursuing near-term quantum advantage.
We develop a no-go theorem for learning an unknown quantum state with QNNs even starting from a high-fidelity initial state.
- Score: 4.852613028421959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum neural networks (QNNs) have been a promising framework in pursuing
near-term quantum advantage in various fields, where many applications can be
viewed as learning a quantum state that encodes useful data. As a quantum
analog of probability distribution learning, quantum state learning is
theoretically and practically essential in quantum machine learning. In this
paper, we develop a no-go theorem for learning an unknown quantum state with
QNNs even starting from a high-fidelity initial state. We prove that when the
loss value is lower than a critical threshold, the probability of avoiding
local minima vanishes exponentially with the qubit count, while only grows
polynomially with the circuit depth. The curvature of local minima is
concentrated to the quantum Fisher information times a loss-dependent constant,
which characterizes the sensibility of the output state with respect to
parameters in QNNs. These results hold for any circuit structures,
initialization strategies, and work for both fixed ansatzes and adaptive
methods. Extensive numerical simulations are performed to validate our
theoretical results. Our findings place generic limits on good initial guesses
and adaptive methods for improving the learnability and scalability of QNNs,
and deepen the understanding of prior information's role in QNNs.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Splitting and Parallelizing of Quantum Convolutional Neural Networks for
Learning Translationally Symmetric Data [0.0]
We propose a novel architecture called split-parallelizing QCNN (sp-QCNN)
By splitting the quantum circuit based on translational symmetry, the sp-QCNN can substantially parallelize the conventional QCNN without increasing the number of qubits.
We show that the sp-QCNN can achieve comparable classification accuracy to the conventional QCNN while considerably reducing the measurement resources required.
arXiv Detail & Related papers (2023-06-12T18:00:08Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
This paper investigates how training of quantum neural network (QNNs) can be done using quantum optimization algorithms.
In this paper, a QNN structure is made where a variational parameterized circuit is incorporated as an input layer named as Variational Quantum Neural Network (VQNNs)
VQNNs is experimented with MNIST digit recognition (less complex) and crack image classification datasets which converge the computation in lesser time than QNN with decent training accuracy.
arXiv Detail & Related papers (2023-03-10T11:24:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Power and limitations of single-qubit native quantum neural networks [5.526775342940154]
Quantum neural networks (QNNs) have emerged as a leading strategy to establish applications in machine learning, chemistry, and optimization.
We formulate a theoretical framework for the expressive ability of data re-uploading quantum neural networks.
arXiv Detail & Related papers (2022-05-16T17:58:27Z) - Quantum Self-Attention Neural Networks for Text Classification [8.975913540662441]
We propose a new simple network architecture, called the quantum self-attention neural network (QSANN)
We introduce the self-attention mechanism into quantum neural networks and then utilize a Gaussian projected quantum self-attention serving as a sensible quantum version of self-attention.
Our method exhibits robustness to low-level quantum noises and showcases resilience to quantum neural network architectures.
arXiv Detail & Related papers (2022-05-11T16:50:46Z) - Exponentially Many Local Minima in Quantum Neural Networks [9.442139459221785]
Quantum Neural Networks (QNNs) are important quantum applications because of their similar promises as classical neural networks.
We conduct a quantitative investigation on the landscape of loss functions of QNNs and identify a class of simple yet extremely hard QNN instances for training.
We empirically confirm that our constructions can indeed be hard instances in practice with typical gradient-based circuits.
arXiv Detail & Related papers (2021-10-06T03:23:44Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.