論文の概要: Towards Efficient and Trustworthy AI Through
Hardware-Algorithm-Communication Co-Design
- arxiv url: http://arxiv.org/abs/2309.15942v1
- Date: Wed, 27 Sep 2023 18:39:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 19:06:51.005954
- Title: Towards Efficient and Trustworthy AI Through
Hardware-Algorithm-Communication Co-Design
- Title(参考訳): ハードウェア・アルゴリズム・コミュニケーション共同設計による効率的かつ信頼できるAIを目指して
- Authors: Bipin Rajendran, Osvaldo Simeone, and Bashir M. Al-Hashimi
- Abstract要約: 最先端のAIモデルは、その不確実性に関する信頼できる尺度を提供することができない。
本稿では,ハードウェアとソフトウェア設計の交差点における研究の方向性を明らかにする。
- 参考スコア(独自算出の注目度): 32.815326729969904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) algorithms based on neural networks have been
designed for decades with the goal of maximising some measure of accuracy. This
has led to two undesired effects. First, model complexity has risen
exponentially when measured in terms of computation and memory requirements.
Second, state-of-the-art AI models are largely incapable of providing
trustworthy measures of their uncertainty, possibly `hallucinating' their
answers and discouraging their adoption for decision-making in sensitive
applications.
With the goal of realising efficient and trustworthy AI, in this paper we
highlight research directions at the intersection of hardware and software
design that integrate physical insights into computational substrates,
neuroscientific principles concerning efficient information processing,
information-theoretic results on optimal uncertainty quantification, and
communication-theoretic guidelines for distributed processing. Overall, the
paper advocates for novel design methodologies that target not only accuracy
but also uncertainty quantification, while leveraging emerging computing
hardware architectures that move beyond the traditional von Neumann digital
computing paradigm to embrace in-memory, neuromorphic, and quantum computing
technologies. An important overarching principle of the proposed approach is to
view the stochasticity inherent in the computational substrate and in the
communication channels between processors as a resource to be leveraged for the
purpose of representing and processing classical and quantum uncertainty.
- Abstract(参考訳): ニューラルネットワークに基づく人工知能(AI)アルゴリズムは、精度を最大化する目的で何十年も設計されてきた。
これは2つの望ましくない効果をもたらした。
第一に、計算とメモリ要求の観点から測定すると、モデル複雑性が指数関数的に増大する。
第二に、最先端のAIモデルは、その不確実性に関する信頼できる尺度を提供することができず、おそらくは、その回答を‘幻滅’させ、センシティブなアプリケーションにおける意思決定への採用を妨げている。
本稿では、効率的で信頼性の高いaiを実現することを目的として、計算基盤に物理的洞察を統合するハードウェアとソフトウェア設計の交差点における研究方向、効率的な情報処理に関する神経科学的な原則、最適な不確実性定量化に関する情報理論的な結果、分散処理のための通信論的ガイドラインについて紹介する。
この論文は、従来のvon neumannデジタルコンピューティングパラダイムを超えて、インメモリ、ニューロモルフィック、量子コンピューティング技術を採用する新しいコンピューティングハードウェアアーキテクチャを活用しつつ、正確性だけでなく不確実性も対象とする新しい設計方法論を提唱している。
提案手法の重要な全体原理は,計算基板やプロセッサ間の通信チャネルに固有の確率性を,古典的および量子的不確実性の表現と処理のために利用するリソースとして見ることである。
関連論文リスト
- Architectural Patterns for Designing Quantum Artificial Intelligence Systems [25.42535682546052]
人工知能システムを強化するために量子コンピューティング技術を利用することで、トレーニングと推論時間を改善し、ノイズや敵攻撃に対する堅牢性を高め、精度を損なうことなくパラメータの数を減らすことが期待されている。
しかし、概念実証やシミュレーションを超えてこれらのシステムの実用的な応用を開発することは、量子ハードウェアの限界とそのようなシステムのソフトウェア工学における未発達の知識基盤によって大きな課題に直面している。
論文 参考訳(メタデータ) (2024-11-14T05:09:07Z) - Quantum Circuit Synthesis and Compilation Optimization: Overview and Prospects [0.0]
本稿では,論理回路設計とコンパイル最適化のステップを組み合わせて,アルゴリズムレベルから量子ハードウェアにまたがる統合設計と最適化スキームの実現可能性について検討する。
AIアルゴリズムの異常な認知と学習能力を活用することで、手作業による設計コストを削減し、実行の精度と効率を高め、ハードウェア上での量子アルゴリズムの優位性の実装と検証を容易にする。
論文 参考訳(メタデータ) (2024-06-30T15:50:10Z) - Mathematical Algorithm Design for Deep Learning under Societal and
Judicial Constraints: The Algorithmic Transparency Requirement [65.26723285209853]
計算モデルにおける透過的な実装が実現可能かどうかを分析するための枠組みを導出する。
以上の結果から,Blum-Shub-Smale Machinesは,逆問題に対する信頼性の高い解法を確立できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-01-18T15:32:38Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
スパイキングニューラルネットワーク(SNN)は、幅広い信号処理アプリケーションのために、ディープニューラルネットワークの魅力的な代替品となっている。
我々は、低レイテンシとエネルギー効率のSNNを効率的に訓練し、拡張するためのアルゴリズムと最適化の進歩について述べる。
デプロイ可能なSNNシステム構築における研究の今後の可能性について論じる。
論文 参考訳(メタデータ) (2023-12-02T19:47:00Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AIモデルは、エネルギー消費と環境持続可能性に前例のない課題を提示する。
有望な解決策の1つは、アナログコンピューティングを再考することである。
ここでは、構造的塑性に着想を得たエッジプルーニングを用いたユニバーサルソリューション、ソフトウェア・ハードウエアの共設計について報告する。
論文 参考訳(メタデータ) (2023-11-13T08:59:01Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6Gネットワークはデータ転送のセマンティクスと有効性(エンドユーザ)を考慮する必要がある。
観測データの背後にある因果構造を学習するための柱としてNeSy AIが提案されている。
GFlowNetは、無線システムにおいて初めて活用され、データを生成する確率構造を学ぶ。
論文 参考訳(メタデータ) (2022-05-22T07:11:57Z) - Bottom-up and top-down approaches for the design of neuromorphic
processing systems: Tradeoffs and synergies between natural and artificial
intelligence [3.874729481138221]
ムーアの法則は指数計算能力の期待を加速させており、システム全体の性能を改善するための新たな方法を求める最終段階に近づいている。
これらの方法の1つは、生物学的ニューラルネットワークシステムの柔軟性と計算効率を達成することを目的とした、脳にインスパイアされた代替コンピューティングアーキテクチャの探索である。
我々は、このパラダイムシフトが実現される際の粒度の異なるレベルについて、その分野の包括的概要を提供する。
論文 参考訳(メタデータ) (2021-06-02T16:51:45Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。