論文の概要: Supervised Learning Models for Early Detection of Albuminuria Risk in
Type-2 Diabetes Mellitus Patients
- arxiv url: http://arxiv.org/abs/2309.16742v1
- Date: Thu, 28 Sep 2023 08:41:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-02 16:58:10.561905
- Title: Supervised Learning Models for Early Detection of Albuminuria Risk in
Type-2 Diabetes Mellitus Patients
- Title(参考訳): 糖尿病2型糖尿病患者の早期診断のための教師付き学習モデル
- Authors: Arief Purnama Muharram, Dicky Levenus Tahapary, Yeni Dwi Lestari,
Randy Sarayar and Valerie Josephine Dirjayanto
- Abstract要約: 本研究の目的は,T2DM患者にアルブミン尿を発症するリスクを予測するための教師付き学習モデルを開発することである。
特徴として10の属性、目標として1の属性(アルブミン尿症)から構成される。
これはそれぞれ0.74と0.75の精度とf1スコアの値を達成し、T2DMの尿失調を予測するためのスクリーニングに適していた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetes, especially T2DM, continues to be a significant health problem. One
of the major concerns associated with diabetes is the development of its
complications. Diabetic nephropathy, one of the chronic complication of
diabetes, adversely affects the kidneys, leading to kidney damage. Diagnosing
diabetic nephropathy involves considering various criteria, one of which is the
presence of a pathologically significant quantity of albumin in urine, known as
albuminuria. Thus, early prediction of albuminuria in diabetic patients holds
the potential for timely preventive measures. This study aimed to develop a
supervised learning model to predict the risk of developing albuminuria in T2DM
patients. The selected supervised learning algorithms included Na\"ive Bayes,
Support Vector Machine (SVM), decision tree, random forest, AdaBoost, XGBoost,
and Multi-Layer Perceptron (MLP). Our private dataset, comprising 184 entries
of diabetes complications risk factors, was used to train the algorithms. It
consisted of 10 attributes as features and 1 attribute as the target
(albuminuria). Upon conducting the experiments, the MLP demonstrated superior
performance compared to the other algorithms. It achieved accuracy and f1-score
values as high as 0.74 and 0.75, respectively, making it suitable for screening
purposes in predicting albuminuria in T2DM. Nonetheless, further studies are
warranted to enhance the model's performance.
- Abstract(参考訳): 糖尿病、特にT2DMは依然として重要な健康問題である。
糖尿病に関する主要な懸念の1つは、その合併症の発生である。
慢性糖尿病の合併症の一つである糖尿病性腎症は腎臓に悪影響を与え、腎臓の損傷を引き起こす。
糖尿病性腎症の診断には様々な基準が考慮され、そのうちの1つは尿中のアルブミンが病理学的にかなりの量存在することである。
したがって、糖尿病患者におけるアルブミン尿症の早期予測は、タイムリーな予防措置の可能性を秘めている。
本研究の目的は,t2dm患者のアルブミン尿症発症リスクを予測するための教師付き学習モデルの開発である。
教師付き学習アルゴリズムには、Na\"ive Bayes, Support Vector Machine (SVM), decision tree, random forest, AdaBoost, XGBoost, Multi-Layer Perceptron (MLP)が含まれる。
糖尿病合併症リスクファクター184項目からなる個人データセットを,アルゴリズムのトレーニングに使用した。
特徴として10の属性と目標として1の属性(アルブミン尿症)から構成されていた。
実験を行うと、MLPは他のアルゴリズムと比較して優れた性能を示した。
これはそれぞれ0.74と0.75の精度とf1スコアの値を達成し、T2DMの尿失調を予測するためのスクリーニングに適していた。
それでも、モデルの性能を高めるためにさらなる研究が保証されている。
関連論文リスト
- From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
GluFormerは、トランスフォーマーアーキテクチャに基づく生体医学的時間的データの生成基盤モデルである。
GluFormerは5つの地理的領域にまたがる4936人を含む15の異なる外部データセットに一般化されている。
今後4年間の健康状態も予測できる。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Machine Learning-Based Diabetes Detection Using Photoplethysmography
Signal Features [0.0]
糖尿病は世界中で何百万人もの人々の健康を損なう慢性疾患である。
そこで本研究では,非侵襲性光胸腺撮影による糖尿病検出の問題点を克服する別の方法を提案する。
PPG信号とアルゴリズムを用いて非糖尿病患者と糖尿病患者を分類し,ロジスティック回帰とeXtreme Gradient Boostingを訓練した。
以上の結果から,糖尿病の検出・予防のための遠隔・非侵襲・連続計測装置の開発に機械学習が期待できることが示唆された。
論文 参考訳(メタデータ) (2023-08-02T14:10:03Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)デバイスは、患者の血糖値に関する詳細な、非侵襲的でリアルタイムな洞察を提供する。
将来のグルコースレベルの予測方法としての高度な機械学習(ML)モデルを活用することで、生活改善の実質的な品質がもたらされる。
論文 参考訳(メタデータ) (2023-02-24T19:10:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - HealthEdge: A Machine Learning-Based Smart Healthcare Framework for
Prediction of Type 2 Diabetes in an Integrated IoT, Edge, and Cloud Computing
System [0.0]
糖尿病の急激な増加は、糖尿病の発生を予防・予測するために予防措置を取る必要があることを要求する。
本稿では,IoT-エッジクラウド統合コンピューティングシステムにおける2型糖尿病予測のための機械学習ベースのスマートヘルスケアフレームワークであるHealthEdgeを提案する。
論文 参考訳(メタデータ) (2023-01-25T07:57:18Z) - Prognosis and Treatment Prediction of Type-2 Diabetes Using Deep Neural
Network and Machine Learning Classifiers [1.1470070927586016]
本研究の動作は,7つの機械学習分類器と,糖尿病の検出と治療を高精度に予測するためのニューラルネットワーク手法の比較研究である。
トレーニングとテストデータセットは9483人の糖尿病患者の情報を蓄積したものです。
私たちのハイパフォーマンスモデルは、糖尿病を予測し、より正確な予測モデルの研究を促進するために病院によって利用できます。
論文 参考訳(メタデータ) (2023-01-08T19:10:20Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
この戦略をデータから学ぶためには、標準的なディープラーニングベースのモデルに対して、大規模なトレーニングデータセットが必要である。
そこで本研究では, 異なる患者から血管木セグメントを組換えることで, 人工的なトレーニングサンプルを生成する方法を提案する。
拡張スキームに則って,タスク固有の入力を入力した3D-DenseNetを用いて,半球間の比較を行う。
論文 参考訳(メタデータ) (2022-05-05T10:31:57Z) - Using Machine Learning Techniques to Identify Key Risk Factors for
Diabetes and Undiagnosed Diabetes [0.0]
本稿では,糖尿病の有無と未診断糖尿病の有無を予測するために構築された機械学習モデルについて概説する。
次に、最高のパフォーマンスモデルの最も関連性の高い変数を比較します。
血液浸透圧、家族歴、様々な化合物の有病率、高血圧は全ての糖尿病リスクの指標である。
論文 参考訳(メタデータ) (2021-05-19T20:02:35Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。