論文の概要: Enhancing Bagging Ensemble Regression with Data Integration for Time Series-Based Diabetes Prediction
- arxiv url: http://arxiv.org/abs/2506.13786v1
- Date: Wed, 11 Jun 2025 04:21:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.134764
- Title: Enhancing Bagging Ensemble Regression with Data Integration for Time Series-Based Diabetes Prediction
- Title(参考訳): 時系列糖尿病予測のためのデータ統合によるバッグアンサンブル回帰の強化
- Authors: Vuong M. Ngo, Tran Quang Vinh, Patricia Kearney, Mark Roantree,
- Abstract要約: この研究は、2011年から2021年までの糖尿病関連データセットを統合するデータエンジニアリングプロセスから始まった。
次に、米国各都市における糖尿病の流行を予測する時系列予測のための拡張型バッグアンサンブル回帰モデル(EBMBag+)を導入する。
実験の結果,EBMBag+は0.41,RMSEは0.53,MAPEは4.01,R2は0.9であった。
- 参考スコア(独自算出の注目度): 0.5399800035598186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diabetes is a chronic metabolic disease characterized by elevated blood glucose levels, leading to complications like heart disease, kidney failure, and nerve damage. Accurate state-level predictions are vital for effective healthcare planning and targeted interventions, but in many cases, data for necessary analyses are incomplete. This study begins with a data engineering process to integrate diabetes-related datasets from 2011 to 2021 to create a comprehensive feature set. We then introduce an enhanced bagging ensemble regression model (EBMBag+) for time series forecasting to predict diabetes prevalence across U.S. cities. Several baseline models, including SVMReg, BDTree, LSBoost, NN, LSTM, and ERMBag, were evaluated for comparison with our EBMBag+ algorithm. The experimental results demonstrate that EBMBag+ achieved the best performance, with an MAE of 0.41, RMSE of 0.53, MAPE of 4.01, and an R2 of 0.9.
- Abstract(参考訳): 糖尿病は、血糖値の上昇を特徴とし、心臓病、腎不全、神経障害などの合併症を引き起こす慢性代謝疾患である。
正確な状態レベルの予測は効果的な医療計画や標的介入に不可欠であるが、多くの場合、必要な分析のためのデータは不完全である。
この研究は、2011年から2021年までの糖尿病関連データセットを統合するデータエンジニアリングプロセスから始まり、包括的な機能セットを作成する。
次に、米国各都市における糖尿病の流行を予測する時系列予測のための拡張型バッグアンサンブル回帰モデル(EBMBag+)を導入する。
SVMReg, BDTree, LSBoost, NN, LSTM, ERMBagなどのベースラインモデルについて, EBMBag+アルゴリズムとの比較を行った。
実験の結果,EBMBag+は0.41,RMSEは0.53,MAPEは4.01,R2は0.9であった。
関連論文リスト
- Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
本研究は、MIMIC-IVデータセットに基づく神経疾患患者を対象とした、ICUにおけるLOS予測のための複数のMLアプローチについて検討する。
評価されたモデルには、古典的MLアルゴリズム(K-Nearest Neighbors、Random Forest、XGBoost、CatBoost)とニューラルネットワーク(LSTM、BERT、テンポラルフュージョントランス)が含まれる。
論文 参考訳(メタデータ) (2025-05-23T14:06:42Z) - Predicting Diabetes Using Machine Learning: A Comparative Study of Classifiers [0.0]
糖尿病は世界中で重要な健康上の課題であり、腎臓病、視力喪失、心臓病などの深刻な合併症に寄与している。
本研究は,従来のML技術と高度なアンサンブル手法の両方を活用する,革新的な糖尿病予測フレームワークを提案する。
我々のアプローチの中心は、畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)レイヤを組み合わせたハイブリッドアーキテクチャであるDNetの開発である。
論文 参考訳(メタデータ) (2025-05-11T16:14:31Z) - AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI Dataset [8.063401183752347]
糖尿病は、持続的な高血糖値(BGL)を特徴とする慢性代謝異常である
近年のディープラーニングモデルでは,BGL予測の改善が期待できる。
本研究では,長期血糖予測のためのマルチモーダルトランスフォーマーベースのフレームワークであるAttenGlucoを提案する。
論文 参考訳(メタデータ) (2025-02-14T05:07:38Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [47.23780364438969]
本稿では,CGMデータの生成基盤モデルであるGluFormerについて紹介する。
GluFormerは、異なる民族や年齢、5つの国、8つのCGMデバイス、多様な病態状態にまたがる19の外部コホートに一般化する。
CGMデータと12年間のフォローアップを持つ580人の成人の縦断的研究において、GluFormerは血液HbA1C%よりも糖尿病を効果的に発症するリスクが高い個人を特定する。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Comparative Analysis of LSTM Neural Networks and Traditional Machine Learning Models for Predicting Diabetes Patient Readmission [0.0]
本研究はDiabetes 130-US Hospitalsデータセットを用いて,各種機械学習モデルによる寛解患者の分析と予測を行う。
LightGBMは、XGBoostが首位だったのに対して、従来のモデルとしてはベストだった。
本研究は,予測医療モデリングにおいて,モデル選択,検証,解釈可能性が重要なステップであることを示す。
論文 参考訳(メタデータ) (2024-06-28T15:06:22Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)デバイスは、患者の血糖値に関する詳細な、非侵襲的でリアルタイムな洞察を提供する。
将来のグルコースレベルの予測方法としての高度な機械学習(ML)モデルを活用することで、生活改善の実質的な品質がもたらされる。
論文 参考訳(メタデータ) (2023-02-24T19:10:40Z) - HealthEdge: A Machine Learning-Based Smart Healthcare Framework for
Prediction of Type 2 Diabetes in an Integrated IoT, Edge, and Cloud Computing
System [0.0]
糖尿病の急激な増加は、糖尿病の発生を予防・予測するために予防措置を取る必要があることを要求する。
本稿では,IoT-エッジクラウド統合コンピューティングシステムにおける2型糖尿病予測のための機械学習ベースのスマートヘルスケアフレームワークであるHealthEdgeを提案する。
論文 参考訳(メタデータ) (2023-01-25T07:57:18Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。