Advances in Kidney Biopsy Lesion Assessment through Dense Instance Segmentation
- URL: http://arxiv.org/abs/2309.17166v2
- Date: Thu, 28 Mar 2024 20:49:55 GMT
- Title: Advances in Kidney Biopsy Lesion Assessment through Dense Instance Segmentation
- Authors: Zhan Xiong, Junling He, Pieter Valkema, Tri Q. Nguyen, Maarten Naesens, Jesper Kers, Fons J. Verbeek,
- Abstract summary: We present textbfDiffRegFormer, an end-to-end dense instance segmentation model designed for multi-class, multi-scale objects within regions-of-interest.
On a dataset of 148 Jones' silver-stained renal WSIs, it outperforms state of art models, achieving AP of 52.1% (detection) and 46.8% (segmentation)
Our lesion classification sub-network achieves 89.2% precision and 64.6% recall on 21889 object patches.
- Score: 0.3926357402982764
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Renal biopsies are the gold standard for diagnosis of kidney diseases. Lesion scores made by renal pathologists are semi-quantitative and exhibit high inter-observer variability. Automating lesion classification within segmented anatomical structures can provide decision support in quantification analysis and reduce the inter-observer variability. Nevertheless, classifying lesions in regions-of-interest (ROIs) is clinically challenging due to (a) a large amount of densely packed anatomical objects (up to 1000), (b) class imbalance across different compartments (at least 3), (c) significant variation in object scales (i.e. sizes and shapes), and (d) the presence of multi-label lesions per anatomical structure. Existing models lack the capacity to address these complexities efficiently and generically. This paper presents \textbf{a generalized technical solution} for large-scale, multi-source datasets with diverse lesions. Our approach utilizes two sub-networks: dense instance segmentation and lesion classification. We introduce \textbf{DiffRegFormer}, an end-to-end dense instance segmentation model designed for multi-class, multi-scale objects within ROIs. Combining diffusion models, transformers, and RCNNs, DiffRegFormer efficiently recognizes over 500 objects across three anatomical classes (glomeruli, tubuli, arteries) within ROIs on a single NVIDIA GeForce RTX 3090 GPU. On a dataset of 303 ROIs (from 148 Jones' silver-stained renal WSIs), it outperforms state of art models, achieving AP of 52.1\% (detection) and 46.8\% (segmentation). Our lesion classification sub-network achieves 89.2\% precision and 64.6\% recall on 21889 object patches (from the 303 ROIs). Importantly, the model demonstrates direct domain transfer to PAS-stained WSIs without fine-tuning.
Related papers
- Multi-Stain Multi-Level Convolutional Network for Multi-Tissue Breast Cancer Image Segmentation [5.572436001833252]
We propose a novel convolutional neural network (CNN) based Multi-class Tissue model for histopathology.
Our model is able to separate bad regions such as folds, artifacts, blurry regions, bubbles, etc. from tissue regions using multi-level context.
Our training pipeline used 12 million patches generated using context-aware augmentations which made our model stain and scanner invariant.
arXiv Detail & Related papers (2024-06-09T15:35:49Z) - Deep Learning for Vascular Segmentation and Applications in Phase
Contrast Tomography Imaging [33.23991248643144]
We present a thorough literature review, highlighting the state of machine learning techniques across diverse organs.
Our goal is to provide a foundation on the topic and identify a robust baseline model for application to vascular segmentation in a new imaging modality.
HiP CT enables 3D imaging of complete organs at an unprecedented resolution of ca. 20mm per voxel.
arXiv Detail & Related papers (2023-11-22T11:15:38Z) - AttResDU-Net: Medical Image Segmentation Using Attention-based Residual
Double U-Net [0.0]
This paper proposes an attention-based residual Double U-Net architecture (AttResDU-Net) that improves on the existing medical image segmentation networks.
We conducted experiments on three datasets: CVC Clinic-DB, ISIC 2018, and the 2018 Data Science Bowl datasets and achieved Dice Coefficient scores of 94.35%, 91.68%, and 92.45% respectively.
arXiv Detail & Related papers (2023-06-25T14:28:08Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - External Attention Assisted Multi-Phase Splenic Vascular Injury
Segmentation with Limited Data [72.99534552950138]
The spleen is one of the most commonly injured solid organs in blunt abdominal trauma.
accurate segmentation of splenic vascular injury is challenging for the following reasons.
arXiv Detail & Related papers (2022-01-04T02:35:56Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Fully Automated and Standardized Segmentation of Adipose Tissue
Compartments by Deep Learning in Three-dimensional Whole-body MRI of
Epidemiological Cohort Studies [11.706960468832301]
Quantification and localization of different adipose tissue compartments from whole-body MR images is of high interest to examine metabolic conditions.
We propose a 3D convolutional neural network (DCNet) to provide a robust and objective segmentation.
Fast (5-7seconds) and reliable adipose tissue segmentation can be obtained with high Dice overlap.
arXiv Detail & Related papers (2020-08-05T17:30:14Z) - Detecting Scatteredly-Distributed, Small, andCritically Important
Objects in 3D OncologyImaging via Decision Stratification [23.075722503902714]
We focus on the detection and segmentation of oncology-significant (or suspicious cancer metastasized) lymph nodes.
We propose a divide-and-conquer decision stratification approach that divides OSLNs into tumor-proximal and tumor-distal categories.
We present a novel global-local network (GLNet) that combines high-level lesion characteristics with features learned from localized 3D image patches.
arXiv Detail & Related papers (2020-05-27T23:12:11Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.