Advances in Kidney Biopsy Lesion Assessment through Dense Instance Segmentation
- URL: http://arxiv.org/abs/2309.17166v3
- Date: Wed, 18 Dec 2024 04:38:38 GMT
- Title: Advances in Kidney Biopsy Lesion Assessment through Dense Instance Segmentation
- Authors: Zhan Xiong, Junling He, Pieter Valkema, Tri Q. Nguyen, Maarten Naesens, Jesper Kers, Fons J. Verbeek,
- Abstract summary: Lesion scores made by renal pathologists are semi-quantitative and exhibit high inter-observer variability.
DiffRegFormer is a computational-friendly framework that can efficiently recognize over 500 objects across three anatomical classes.
Our approach outperforms previous methods, achieving an Average Precision of 52.1% (detection) and 46.8% (segmentation)
- Score: 0.3926357402982764
- License:
- Abstract: Renal biopsies are the gold standard for the diagnosis of kidney diseases. Lesion scores made by renal pathologists are semi-quantitative and exhibit high inter-observer variability. Automating lesion classification within segmented anatomical structures can provide decision support in quantification analysis, thereby reducing inter-observer variability. Nevertheless, classifying lesions in regions-of-interest (ROIs) is clinically challenging due to (a) a large amount of densely packed anatomical objects, (b) class imbalance across different compartments (at least 3), (c) significant variation in size and shape of anatomical objects and (d) the presence of multi-label lesions per anatomical structure. Existing models cannot address these complexities in an efficient and generic manner. This paper presents an analysis for a \textbf{generalized solution} to datasets from various sources (pathology departments) with different types of lesions. Our approach utilizes two sub-networks: dense instance segmentation and lesion classification. We introduce \textbf{DiffRegFormer}, an end-to-end dense instance segmentation sub-network designed for multi-class, multi-scale objects within ROIs. Combining diffusion models, transformers, and RCNNs, DiffRegFormer {is a computational-friendly framework that can efficiently recognize over 500 objects across three anatomical classes, i.e., glomeruli, tubuli, and arteries, within ROIs.} In a dataset of 303 ROIs from 148 Jones' silver-stained renal Whole Slide Images (WSIs), our approach outperforms previous methods, achieving an Average Precision of 52.1\% (detection) and 46.8\% (segmentation). Moreover, our lesion classification sub-network achieves 89.2\% precision and 64.6\% recall on 21889 object patches out of the 303 ROIs. Lastly, our model demonstrates direct domain transfer to PAS-stained renal WSIs without fine-tuning.
Related papers
- Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - Deep Learning for Vascular Segmentation and Applications in Phase
Contrast Tomography Imaging [33.23991248643144]
We present a thorough literature review, highlighting the state of machine learning techniques across diverse organs.
Our goal is to provide a foundation on the topic and identify a robust baseline model for application to vascular segmentation in a new imaging modality.
HiP CT enables 3D imaging of complete organs at an unprecedented resolution of ca. 20mm per voxel.
arXiv Detail & Related papers (2023-11-22T11:15:38Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
We propose an unsupervised method to simultaneously learn local and global shape structures across population anatomies.
Our pipeline significantly improves unsupervised correspondence estimation for SSMs compared to baseline methods.
Our method is robust enough to learn from noisy neural network predictions, potentially enabling scaling SSMs to larger patient populations.
arXiv Detail & Related papers (2023-04-15T09:39:52Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - External Attention Assisted Multi-Phase Splenic Vascular Injury
Segmentation with Limited Data [72.99534552950138]
The spleen is one of the most commonly injured solid organs in blunt abdominal trauma.
accurate segmentation of splenic vascular injury is challenging for the following reasons.
arXiv Detail & Related papers (2022-01-04T02:35:56Z) - Deeply supervised UNet for semantic segmentation to assist
dermatopathological assessment of Basal Cell Carcinoma (BCC) [2.031570465477242]
We focus on detecting Basal Cell Carcinoma (BCC) through semantic segmentation using several models based on the UNet architecture.
We analyze two different encoders for the first part of the UNet network and two additional training strategies.
The best model achieves over 96%, accuracy, sensitivity, and specificity on the test set.
arXiv Detail & Related papers (2021-03-05T15:39:55Z) - Fully Automated and Standardized Segmentation of Adipose Tissue
Compartments by Deep Learning in Three-dimensional Whole-body MRI of
Epidemiological Cohort Studies [11.706960468832301]
Quantification and localization of different adipose tissue compartments from whole-body MR images is of high interest to examine metabolic conditions.
We propose a 3D convolutional neural network (DCNet) to provide a robust and objective segmentation.
Fast (5-7seconds) and reliable adipose tissue segmentation can be obtained with high Dice overlap.
arXiv Detail & Related papers (2020-08-05T17:30:14Z) - Detecting Scatteredly-Distributed, Small, andCritically Important
Objects in 3D OncologyImaging via Decision Stratification [23.075722503902714]
We focus on the detection and segmentation of oncology-significant (or suspicious cancer metastasized) lymph nodes.
We propose a divide-and-conquer decision stratification approach that divides OSLNs into tumor-proximal and tumor-distal categories.
We present a novel global-local network (GLNet) that combines high-level lesion characteristics with features learned from localized 3D image patches.
arXiv Detail & Related papers (2020-05-27T23:12:11Z) - Cross-stained Segmentation from Renal Biopsy Images Using Multi-level
Adversarial Learning [13.30545860115548]
We design a robust and flexible model for cross-stained segmentation.
It is able to improve segmentation performance on target type of stained images and use unlabeled data to achieve similar accuracy to labeled data.
arXiv Detail & Related papers (2020-02-20T06:49:48Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.