論文の概要: STRONG -- Structure Controllable Legal Opinion Summary Generation
- arxiv url: http://arxiv.org/abs/2309.17280v1
- Date: Fri, 29 Sep 2023 14:31:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-02 13:23:25.106672
- Title: STRONG -- Structure Controllable Legal Opinion Summary Generation
- Title(参考訳): STRONG -- Structure Controllable Legal Opinion Summary Generation
- Authors: Yang Zhong and Diane Litman
- Abstract要約: 本稿では,長大な法的意見の要約構造に対するアプローチを提案する。
提案手法では,コヒーレントな要約を生成する際に,予測された引数ロール情報を用いてモデルを導出する。
- 参考スコア(独自算出の注目度): 8.527175356478455
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose an approach for the structure controllable summarization of long
legal opinions that considers the argument structure of the document. Our
approach involves using predicted argument role information to guide the model
in generating coherent summaries that follow a provided structure pattern. We
demonstrate the effectiveness of our approach on a dataset of legal opinions
and show that it outperforms several strong baselines with respect to ROUGE,
BERTScore, and structure similarity.
- Abstract(参考訳): 本稿では,文書の議論構造を考慮した長大な法的意見の要約構造に対するアプローチを提案する。
提案手法では,提案する構造パターンに従うコヒーレントな要約を生成する際に,予測した引数の役割情報を用いてモデルを導出する。
法的な意見のデータセットによるアプローチの有効性を実証し,ROUGE,BERTScore,構造的類似性に関して,いくつかの強いベースラインを上回っていることを示す。
関連論文リスト
- A Methodology for Gradual Semantics for Structured Argumentation under Incomplete Information [15.717458041314194]
構造化議論フレームワークの段階的意味論を得るための新しい手法を提案する。
我々の方法論は議論の前提に関する不完全な情報に対応している。
方法論の2つの異なるインスタンス化を導入することで、このアプローチの可能性を実証する。
論文 参考訳(メタデータ) (2024-10-29T16:38:35Z) - Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
本稿では,抽出アプローチの帰属性と拡張性と,大規模言語モデル(LLM)の一貫性と拡散性を組み合わせた,教師なし抽象的意見要約手法を提案する。
我々の方法であるHIROは、意味的に整理された離散的な階層を通して文を経路にマッピングするインデックス構造を学習する。
推測時にインデックスを投入し、入力レビューから人気意見を含む文群を識別し、検索する。
論文 参考訳(メタデータ) (2024-03-01T10:38:07Z) - Document Structure in Long Document Transformers [64.76981299465885]
長い文書は、しばしばセクションヘッダーや段落のような異なる機能で階層的に整理された要素を持つ構造を示す。
文書構造の不明瞭さにもかかわらず、自然言語処理(NLP)におけるその役割はいまだに不透明である。
長期文書変換モデルは事前学習中に文書構造の内部表現を取得するか?
事前トレーニング後に構造情報をモデルに伝達するにはどうすればよいのか、下流のパフォーマンスにどのように影響するのか?
論文 参考訳(メタデータ) (2024-01-31T08:28:06Z) - Towards Argument-Aware Abstractive Summarization of Long Legal Opinions
with Summary Reranking [6.9827388859232045]
本稿では,論文の議論構造を考慮した,長い法的意見の抽象的要約のための簡単なアプローチを提案する。
提案手法では、引数ロール情報を用いて複数の候補要約を生成し、文書の引数構造との整合性に基づいてこれらの候補を再分類する。
我々は、長い法的意見のデータセットにアプローチの有効性を実証し、それがいくつかの強いベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2023-06-01T13:44:45Z) - Incorporating Distributions of Discourse Structure for Long Document
Abstractive Summarization [11.168330694255404]
本稿では,修辞関係のタイプと不確実性を包括的に組み込んだ新しい要約モデルであるRSTformerを紹介する。
文書レベルの修辞構造に根ざしたRTTアテンション機構は,最近開発されたLongformerフレームワークの拡張である。
論文 参考訳(メタデータ) (2023-05-26T09:51:47Z) - StructGPT: A General Framework for Large Language Model to Reason over
Structured Data [117.13986738340027]
我々は,構造化データに基づく質問応答タスクの解法として,emphIterative Reading-then-Reasoning(IRR)アプローチを開発した。
提案手法はChatGPTの性能を大幅に向上させ,全データの教師付きベースラインに対して同等のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-05-16T17:45:23Z) - Computing and Exploiting Document Structure to Improve Unsupervised
Extractive Summarization of Legal Case Decisions [7.99536002595393]
文書構造を利用するために再重み付けアルゴリズムを用いる教師なしグラフベースのランキングモデルを提案する。
カナディアン・ロー・ケース・ロー・データセットの結果,提案手法がいくつかの強い基準線より優れていることが示された。
論文 参考訳(メタデータ) (2022-11-06T22:20:42Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
本稿では, PLM を用いた自己回帰的手法を用いて, モデル構造を行動列として記述する。
我々のアプローチは、私たちが見てきた全ての構造化予測タスクにおいて、新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-10-26T13:27:26Z) - ArgLegalSumm: Improving Abstractive Summarization of Legal Documents
with Argument Mining [0.2538209532048867]
本稿では,議論ロールラベルを要約プロセスに統合することにより,法的文書の議論的構造を捉える手法を提案する。
事前訓練された言語モデルを用いた実験により,提案手法は強いベースラインよりも性能を向上することが示された。
論文 参考訳(メタデータ) (2022-09-04T15:55:56Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
本稿では,古典的高階論理へのエンコーディングに基づく抽象的議論フレームワークの表現手法を提案する。
対話型および自動推論ツールを用いた抽象的議論フレームワークのコンピュータ支援評価のための一様フレームワークを提供する。
論文 参考訳(メタデータ) (2021-10-18T10:45:59Z) - Aspect-Controllable Opinion Summarization [58.5308638148329]
アスペクトクエリに基づいてカスタマイズした要約を生成する手法を提案する。
レビューコーパスを用いて、アスペクトコントローラで強化された(リビュー、サマリ)ペアの合成トレーニングデータセットを作成する。
合成データセットを用いて事前学習したモデルを微調整し、アスペクトコントローラを変更することでアスペクト固有の要約を生成する。
論文 参考訳(メタデータ) (2021-09-07T16:09:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。