論文の概要: Adaptive-Solver Framework for Dynamic Strategy Selection in Large Language Model Reasoning
- arxiv url: http://arxiv.org/abs/2310.01446v2
- Date: Mon, 23 Dec 2024 08:29:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:54:47.004523
- Title: Adaptive-Solver Framework for Dynamic Strategy Selection in Large Language Model Reasoning
- Title(参考訳): 大規模言語モデル推論における動的戦略選択のための適応ソルバーフレームワーク
- Authors: Jianpeng Zhou, Wanjun Zhong, Yanlin Wang, Jiahai Wang,
- Abstract要約: 大きな言語モデル(LLM)は、推論タスクを扱う素晴らしい能力を示している。
LLMベースのほとんどの手法はワンサイズ・オールアプローチを採用している。
これらの手法の柔軟性は不要な計算オーバーヘッドや準最適性能をもたらす可能性がある。
- 参考スコア(独自算出の注目度): 31.643337118330944
- License:
- Abstract: Large Language Models (LLMs) demonstrate impressive ability in handling reasoning tasks. However, unlike humans who can instinctively adapt their problem-solving strategies to the complexity of task, most LLM-based methods adopt a one-size-fits-all approach. These methods employ consistent models, sample sizes, prompting methods and levels of problem decomposition, regardless of the problem complexity. The inflexibility of these methods can bring unnecessary computational overhead or sub-optimal performance. To address this limitation, we introduce an Adaptive-Solver (AS) framework tha dynamically adapts solving strategies to suit various problems, enabling the flexible allocation of test-time computational resources. The framework functions with two primary modules. The initial evaluation module assesses the reliability of the current solution using answer consistency. If the solution is deemed unreliable, the subsequent adaptation module comes into play. Within this module, various types of adaptation strategies are employed collaboratively. Through such dynamic and multi-faceted adaptations, our framework can help reduce computational consumption and improve performance. Experimental results from complex reasoning benchmarks reveal that our method can significantly reduce API costs (up to 85%) while maintaining original performance. Alternatively, it achieves up to 4.5% higher accuracy compared to the baselines at the same cost. The code and dataset are available at https://github.com/john1226966735/Adaptive-Solver.
- Abstract(参考訳): 大きな言語モデル(LLM)は、推論タスクを扱う素晴らしい能力を示している。
しかしながら、タスクの複雑さに直感的に問題解決戦略を適応できる人間とは異なり、ほとんどのLCMベースの手法は1つの大きさのアプローチを採用する。
これらの手法は、問題の複雑さに関わらず、一貫したモデル、サンプルサイズ、問題の解法とレベルを取り入れている。
これらの手法の柔軟性は不要な計算オーバーヘッドや準最適性能をもたらす可能性がある。
この制限に対処するために,様々な問題に適合する解法戦略を動的に適用するAdaptive-Solver (AS) フレームワークを導入し,テスト時間計算資源の柔軟な割り当てを可能にする。
フレームワークは2つの主要なモジュールで機能する。
初期評価モジュールは、応答整合性を用いて現在のソリューションの信頼性を評価する。
解が信頼できないと判断された場合、その後の適応モジュールが再生される。
このモジュール内では、様々なタイプの適応戦略が協調的に採用されている。
このような動的かつ多面的な適応により、我々のフレームワークは計算消費の削減と性能の向上に役立てることができる。
複雑な推論ベンチマークによる実験結果から,本手法はオリジナル性能を維持しながら,APIコスト(最大85%)を大幅に削減できることがわかった。
もしくは、同じコストでベースラインよりも最大4.5%高い精度を達成する。
コードとデータセットはhttps://github.com/john1226966735/Adaptive-Solverで公開されている。
関連論文リスト
- Large Language Models for Combinatorial Optimization of Design Structure Matrix [4.513609458468522]
エンジニアリングアプリケーションの効率と性能を改善するためには、組合せ最適化(CO)が不可欠である。
実世界の工学的問題に関しては、純粋数学的推論に基づくアルゴリズムは限定的であり、最適化に必要な文脈ニュアンスを捉えることができない。
本研究では,工学的CO問題の解法におけるLarge Language Models (LLMs) の可能性について,その推論能力と文脈的知識を活用して検討する。
論文 参考訳(メタデータ) (2024-11-19T15:39:51Z) - Autoformulation of Mathematical Optimization Models Using LLMs [50.030647274271516]
商用問題解決者のための自然言語記述から最適化モデルを作成するための自動アプローチを開発する。
本稿では,(1)問題依存仮説空間の定義,(2)不確実性の下でこの空間を効率的に探索すること,(3)定式化の正しさを評価すること,の3つの課題を同定する。
論文 参考訳(メタデータ) (2024-11-03T20:41:38Z) - Duo-LLM: A Framework for Studying Adaptive Computation in Large Language Models [16.16372459671255]
大規模言語モデル(LLM)は通常、固定された計算予算を使用してトークンによって出力トークンを生成する。
LLMの各フィードフォワードネットワーク層に小さな補助モジュールを統合する新しいフレームワークを提案する。
訓練されたルータがオーラクルと異なる動作をしており、しばしば準最適解が得られることを示す。
論文 参考訳(メタデータ) (2024-10-01T16:10:21Z) - AQA: Adaptive Question Answering in a Society of LLMs via Contextual Multi-Armed Bandit [59.10281630985958]
質問応答(QA)では、異なる質問を異なる回答戦略で効果的に扱うことができる。
本稿では,各質問に対して最適なQA戦略を適応的に選択する動的手法を提案する。
提案手法は,複数のモジュールを持つQAシステムの適応的オーケストレーションに有効であることを示す。
論文 参考訳(メタデータ) (2024-09-20T12:28:18Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
機械学習(ML)モデルは、制約付き最適化ソルバをエミュレートするために訓練される。
本稿では,MLモデルを用いて2つの解推定を直接予測する手法を提案する。
これにより、双対目的が損失関数であるエンドツーエンドのトレーニングスキームと、双対上昇法をエミュレートした原始的実現可能性への解推定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T04:43:22Z) - Improving Large Language Model Fine-tuning for Solving Math Problems [20.417053742869403]
大きな言語モデルのパス・アット・ワン(pass-at-one)とパス・アット・N(pass-at-N)のパフォーマンスの間には大きなギャップがある。
挑戦的なMATHデータセットを用いて3つの微調整戦略を検討する。
我々は、微調整されたPaLM 2-Lモデルを用いて、MATHデータセット上で約58.8%の精度が得られる微調整レシピを設計する。
論文 参考訳(メタデータ) (2023-10-16T04:11:19Z) - Reinforcement Learning Methods for Wordle: A POMDP/Adaptive Control
Approach [0.3093890460224435]
我々は、新しい強化学習手法を用いて、人気のあるWordleパズルの解法に対処する。
Wordleパズルでは、比較的控えめな計算コストで最適に近いオンラインソリューション戦略が得られる。
論文 参考訳(メタデータ) (2022-11-15T03:46:41Z) - Learning Adaptive Evolutionary Computation for Solving Multi-Objective
Optimization Problems [3.3266268089678257]
本稿では, 深層強化学習(DRL)を用いた適応パラメータ制御とMOEAを統合したフレームワークを提案する。
DRLポリシは、最適化中のソリューションに対する突然変異の強度と確率を決定する値を適応的に設定するように訓練されている。
学習されたポリシーは転送可能であることを示す。つまり、単純なベンチマーク問題で訓練されたポリシーは、複雑な倉庫最適化問題を解決するために直接適用可能である。
論文 参考訳(メタデータ) (2022-11-01T22:08:34Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
メタモデルのニューラルタンジェントカーネル(NTK)によって誘導される再生カーネルヒルベルト空間(RKHS)における最初のメタラーニングパラダイムを提案する。
このパラダイムでは,MAMLフレームワークのように,最適な反復内ループ適応を必要としない2つのメタ学習アルゴリズムを導入する。
本研究の目的は,1) 適応をRKHSの高速適応正則化器に置き換えること,2) NTK理論に基づいて解析的に適応を解くことである。
論文 参考訳(メタデータ) (2021-02-07T20:53:23Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
無線ネットワークにおけるリソース割り当てとトランシーバーは、通常最適化問題の解決によって設計される。
本稿では,変数最適化と関数最適化の両問題を解くための教師なし・教師なし学習フレームワークを紹介する。
論文 参考訳(メタデータ) (2020-01-03T11:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。