論文の概要: Modern code reviews -- Preliminary results of a systematic mapping study
- arxiv url: http://arxiv.org/abs/2310.01526v1
- Date: Mon, 2 Oct 2023 18:15:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 05:18:21.048558
- Title: Modern code reviews -- Preliminary results of a systematic mapping study
- Title(参考訳): 最新のコードレビュー -- 体系的マッピング研究の予備的結果
- Authors: Deepika Badampudi, Ricardo Britto, Michael Unterkalmsteiner
- Abstract要約: 我々は、177の研究論文の分類と分類に体系的なマッピングアプローチを用いる。
本研究の予備的な成果として,2005年から2018年にかけての現代コードレビュー研究の主な貢献を分類する。
- 参考スコア(独自算出の注目度): 4.836784876456115
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reviewing source code is a common practice in a modern and collaborative
coding environment. In the past few years, the research on modern code reviews
has gained interest among practitioners and researchers. The objective of our
investigation is to observe the evolution of research related to modern code
reviews, identify research gaps and serve as a basis for future research. We
use a systematic mapping approach to identify and classify 177 research papers.
As preliminary result of our investigation, we present in this paper a
classification scheme of the main contributions of modern code review research
between 2005 and 2018.
- Abstract(参考訳): ソースコードのレビューは、モダンでコラボレーティブなコーディング環境において一般的なプラクティスです。
ここ数年、現代のコードレビューの研究は、実践者や研究者の間で関心を集めている。
調査の目的は、現代のコードレビューに関連する研究の進化を観察し、研究ギャップを特定し、将来の研究の基盤となることにあります。
我々は177の研究論文の識別と分類に体系的マッピング手法を用いる。
本研究の予備的な成果として,2005年から2018年までの近代的コードレビュー研究の貢献度を分類する手法を提案する。
関連論文リスト
- Enhancing Code Consistency in AI Research with Large Language Models and Retrieval-Augmented Generation [0.0]
本稿では,対応する研究論文に概説されたアルゴリズムと方法論に対するコード実装の検証を目的とした,新しいシステムを提案する。
本システムではRetrieval-Augmented Generationを用いて研究論文とコードベースの両方から関連する詳細を抽出し,続いてLarge Language Modelを用いた構造化比較を行った。
論文 参考訳(メタデータ) (2025-02-02T00:35:42Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
大規模言語モデル(LLM)は、テキスト生成の大幅な進歩をもたらしたが、分類タスクの強化の可能性はまだ未検討である。
生成と符号化の両方のアプローチを含む分類のための微調整LDMを徹底的に研究するためのフレームワークを提案する。
我々はこのフレームワークを編集意図分類(EIC)においてインスタンス化する。
論文 参考訳(メタデータ) (2024-10-02T20:48:28Z) - CodeRefine: A Pipeline for Enhancing LLM-Generated Code Implementations of Research Papers [0.0]
CodeRefineは、研究論文の方法論を大規模言語モデルを用いて機能コードに変換するためのフレームワークである。
我々の多段階アプローチはまず、論文からキーテキストチャンクを抽出して要約し、それらのコード関連性を分析し、知識グラフを作成する。
その後、この構造化表現からコードが生成され、提案されたリフレクション検索拡張生成アプローチによって拡張される。
論文 参考訳(メタデータ) (2024-08-23T20:51:04Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - State-of-the-art generalisation research in NLP: A taxonomy and review [87.1541712509283]
NLPにおける一般化研究の特徴付けと理解のための分類法を提案する。
我々の分類学は、一般化研究の広範な文献レビューに基づいている。
私たちは、一般化をテストする400以上の論文を分類するために分類を使います。
論文 参考訳(メタデータ) (2022-10-06T16:53:33Z) - Best Practices and Scoring System on Reviewing A.I. based Medical
Imaging Papers: Part 1 Classification [0.9428556282541211]
SIIMの機械学習教育サブミッションは、これらの研究をレビューするためのガイドラインを確立するための知識ギャップと深刻な必要性を特定している。
このシリーズの最初のエントリは、画像分類のタスクに焦点を当てている。
このシリーズの目的は、A.I.をベースとした医療画像のレビュープロセスを改善するためのリソースを提供することである。
論文 参考訳(メタデータ) (2022-02-03T21:46:59Z) - Yes-Yes-Yes: Donation-based Peer Reviewing Data Collection for ACL
Rolling Review and Beyond [58.71736531356398]
本稿では、ピアレビューデータについて詳細な議論を行い、ピアレビューデータ収集のための倫理的・法的デシダータの概要を述べるとともに、最初の継続的な寄付ベースのデータ収集ワークフローを提案する。
本稿では、ACL Rolling Reviewにおいて、このワークフローの現在進行中の実装について報告し、新たに収集したデータから得られた最初の洞察を提供する。
論文 参考訳(メタデータ) (2022-01-27T11:02:43Z) - Mapping Research Topics in Software Testing: A Bibliometric Analysis [9.462148324186398]
コワード分析(Co-word analysis)は、用語の共起に基づくテキストマイニング手法である。
我々の分析は、ソフトウェアテスト研究を関連トピックのクラスタにマッピングすることを可能にする。
このマップはまた、Webやモバイルアプリケーションや人工知能に関連するトピックなど、重要度が増しているトピックを示唆している。
論文 参考訳(メタデータ) (2021-09-09T08:06:51Z) - The CSO Classifier: Ontology-Driven Detection of Research Topics in
Scholarly Articles [0.0]
コンピュータサイエンスオントロジー(CSO)に基づく研究論文の自動分類のための新しい教師なしアプローチを紹介します。
CSOは、研究論文(タイトル、抽象、キーワード)に関連するメタデータを入力として取り、オントロジーから引き出された研究概念の選択を返します。
このアプローチは、手作業による注釈付き記事のゴールドスタンダードで評価され、代替方法よりも大幅に改善されました。
論文 参考訳(メタデータ) (2021-04-02T09:02:32Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
過去10年は、ディープラーニングが前例のない成功を収めたために、この分野の研究が急増している。
本稿では,1961年から2021年までの最先端のアプローチを見直し,そのギャップを埋める。
特徴抽出と分類に使用されるテキストとモデルに基づいて,テキスト分類のための分類を作成する。
論文 参考訳(メタデータ) (2020-08-02T00:09:03Z) - Code Review in the Classroom [57.300604527924015]
教室設定の若い開発者は、コードレビュープロセスの潜在的に有利で問題のある領域の明確な図を提供している。
彼らのフィードバックは、プロセスはプロセスを改善するためにいくつかのポイントで十分に受け入れられていることを示唆している。
本論文は,教室でコードレビューを行うためのガイドラインとして利用することができる。
論文 参考訳(メタデータ) (2020-04-19T06:07:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。