論文の概要: Dynamic Spatio-Temporal Summarization using Information Based Fusion
- arxiv url: http://arxiv.org/abs/2310.01617v1
- Date: Mon, 2 Oct 2023 20:21:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 18:58:16.340451
- Title: Dynamic Spatio-Temporal Summarization using Information Based Fusion
- Title(参考訳): 情報融合を用いた動的時空間要約
- Authors: Humayra Tasnim, Soumya Dutta, Melanie Moses
- Abstract要約: 本稿では,重要な時間経過における情報的特徴を識別し,少ない情報的特徴を融合する動的時間的データ要約手法を提案する。
既存の手法とは異なり,本手法は生と要約の両方のタイムステップを保持し,時間とともに情報の変化を包括的に把握する。
我々は,粒子ベースのフローシミュレーション,セキュリティと監視の応用,免疫システム内の生体細胞間相互作用など,多様なデータセットにまたがる手法の汎用性を実証した。
- 参考スコア(独自算出の注目度): 3.038642416291856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the era of burgeoning data generation, managing and storing large-scale
time-varying datasets poses significant challenges. With the rise of
supercomputing capabilities, the volume of data produced has soared,
intensifying storage and I/O overheads. To address this issue, we propose a
dynamic spatio-temporal data summarization technique that identifies
informative features in key timesteps and fuses less informative ones. This
approach minimizes storage requirements while preserving data dynamics. Unlike
existing methods, our method retains both raw and summarized timesteps,
ensuring a comprehensive view of information changes over time. We utilize
information-theoretic measures to guide the fusion process, resulting in a
visual representation that captures essential data patterns. We demonstrate the
versatility of our technique across diverse datasets, encompassing
particle-based flow simulations, security and surveillance applications, and
biological cell interactions within the immune system. Our research
significantly contributes to the realm of data management, introducing enhanced
efficiency and deeper insights across diverse multidisciplinary domains. We
provide a streamlined approach for handling massive datasets that can be
applied to in situ analysis as well as post hoc analysis. This not only
addresses the escalating challenges of data storage and I/O overheads but also
unlocks the potential for informed decision-making. Our method empowers
researchers and experts to explore essential temporal dynamics while minimizing
storage requirements, thereby fostering a more effective and intuitive
understanding of complex data behaviors.
- Abstract(参考訳): 急成長するデータ生成の時代において、大規模な時変データセットの管理と保存には大きな課題がある。
スーパーコンピューティングの能力が高まり、生成されるデータの量は急増し、ストレージとi/oオーバーヘッドが増大した。
そこで本研究では,重要時間ステップにおける情報的特徴を識別し,より少ない情報的特徴を融合する動的時空間データ要約手法を提案する。
このアプローチは、データダイナミクスを維持しながら、ストレージ要件を最小化する。
既存の手法とは異なり,本手法は生と要約の両方のタイムステップを保持し,時間とともに情報の変化を包括的に把握する。
情報理論の手法を用いて融合プロセスの導出を行い,本質的なデータパターンを捉える視覚的表現を実現する。
我々は,粒子ベースのフローシミュレーション,セキュリティと監視の応用,免疫システム内の生体細胞間相互作用など,多様なデータセットにまたがる手法の汎用性を実証した。
私たちの研究はデータ管理の領域に大きく貢献し、様々な分野にわたる効率性の向上と深い洞察をもたらします。
我々は,in situ解析やポストホック解析に適用可能な大規模データセットを扱うための合理化手法を提案する。
これは、データストレージとi/oオーバーヘッドの増大する課題に対処するだけでなく、インフォームド意思決定の可能性を解き放ちます。
本手法は,ストレージ要件を最小化し,複雑なデータ行動をより効果的かつ直感的に理解する上で重要な時間的ダイナミクスを探索する。
関連論文リスト
- Earth System Data Cubes: Avenues for advancing Earth system research [4.408949931570938]
地球系データキューブ(ESDC)は、このデータの洪水をシンプルで堅牢なフォーマットに変換するのに適したソリューションの1つとして登場した。
ESDCは、データをテンポラリグリッドを備えた分析可能なフォーマットに整理することで、これを実現している。
新たなクラウドベースの技術に照らして、データの潜在能力を最大限に実現するための障壁がある。
論文 参考訳(メタデータ) (2024-08-05T09:50:16Z) - Enabling High Data Throughput Reinforcement Learning on GPUs: A Domain Agnostic Framework for Data-Driven Scientific Research [90.91438597133211]
我々は、強化学習の適用において重要なシステムのボトルネックを克服するために設計されたフレームワークであるWarpSciを紹介する。
我々は、CPUとGPU間のデータ転送の必要性を排除し、数千のシミュレーションを同時実行可能にする。
論文 参考訳(メタデータ) (2024-08-01T21:38:09Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behaviour [6.716560115378451]
我々は,人間行動分析のための計算駆動型データ探索を効率化するために,モジュール型でフレキシブルでユーザフレンドリなソフトウェアフレームワークを導入する。
我々の主な目的は、高度な計算方法論へのアクセスを民主化することであり、これにより研究者は、広範囲の技術的熟練を必要とせずに、詳細な行動分析を行うことができる。
論文 参考訳(メタデータ) (2024-07-18T11:28:52Z) - MaSS: Multi-attribute Selective Suppression for Utility-preserving Data Transformation from an Information-theoretic Perspective [10.009178591853058]
本稿では,このユーティリティ保護プライバシ保護問題に対する情報理論の形式的定義を提案する。
我々は、ターゲットデータセットからセンシティブな属性を抑えることができるデータ駆動学習可能なデータ変換フレームワークを設計する。
その結果,様々な構成下での手法の有効性と一般化性を示した。
論文 参考訳(メタデータ) (2024-05-23T18:35:46Z) - CUDC: A Curiosity-Driven Unsupervised Data Collection Method with
Adaptive Temporal Distances for Offline Reinforcement Learning [62.58375643251612]
本稿では,Curiosity-driven Unsupervised Data Collection (CUDC)法を提案する。
この適応的な到達性機構により、特徴表現は多様化することができ、エージェントは、好奇心で高品質なデータを集めるために自分自身をナビゲートすることができる。
実験的に、CUDCはDeepMindコントロールスイートの様々なダウンストリームオフラインRLタスクにおいて、既存の教師なし手法よりも効率と学習性能が優れている。
論文 参考訳(メタデータ) (2023-12-19T14:26:23Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - Building Flexible, Scalable, and Machine Learning-ready Multimodal
Oncology Datasets [17.774341783844026]
本研究は、オンコロジーデータシステム(MINDS)のマルチモーダル統合を提案する。
MINDSはフレキシブルでスケーラブルで費用対効果の高いメタデータフレームワークで、公開ソースから異なるデータを効率的に分離する。
MINDSは、マルチモーダルデータを調和させることで、より分析能力の高い研究者を力づけることを目指している。
論文 参考訳(メタデータ) (2023-09-30T15:44:39Z) - iSAGE: An Incremental Version of SAGE for Online Explanation on Data
Streams [8.49072000414555]
iSAGEは、SAGEの時間およびメモリ効率のインクリメンタル化である。
iSAGE は SAGE と同様の理論的性質を持つことを示す。
論文 参考訳(メタデータ) (2023-03-02T11:51:54Z) - A Comprehensive Survey of Dataset Distillation [73.15482472726555]
限られた計算能力で無制限に成長するデータを扱うことは困難になっている。
ディープラーニング技術はこの10年で前例のない発展を遂げた。
本稿では,多面的なデータセット蒸留の総合的な理解を提供する。
論文 参考訳(メタデータ) (2023-01-13T15:11:38Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。