Stochastic Quantum Power Flow for Risk Assessment in Power Systems
- URL: http://arxiv.org/abs/2310.02203v2
- Date: Fri, 10 Jan 2025 10:08:13 GMT
- Title: Stochastic Quantum Power Flow for Risk Assessment in Power Systems
- Authors: Brynjar Sævarsson, Hjörtur Jóhannsson, Spyros Chatzivasileiadis,
- Abstract summary: This paper introduces the first quantum computing framework for Quantum Power Flow (SQPF) analysis in power systems.<n>The proposed method leverages quantum states to encode power flow distributions, enabling the use of Quantum Monte Carlo sampling to efficiently assess the probability of line overloads.<n>We validate the method on two test systems, demonstrating the computational advantage of quantum algorithms in reducing sample complexity while maintaining accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces the first quantum computing framework for Stochastic Quantum Power Flow (SQPF) analysis in power systems. The proposed method leverages quantum states to encode power flow distributions, enabling the use of Quantum Monte Carlo (QMC) sampling to efficiently assess the probability of line overloads. Our approach significantly reduces the required sample size compared to traditional Monte Carlo methods, making it particularly suited for risk assessments in scenarios involving high uncertainty, such as renewable energy integration. We validate the method on two test systems, demonstrating the computational advantage of quantum algorithms in reducing sample complexity while maintaining accuracy. This work represents a foundational step toward scalable quantum power flow analysis, with potential applications in future power system operations and planning. The results show promising computational speedups, underscoring the potential of quantum computing in addressing the increasing uncertainty in modern power grids.
Related papers
- Quantum Simulation for Dynamical Transition Rates in Open Quantum Systems [0.0]
We introduce a novel and efficient quantum simulation method to compute dynamical transition rates in Markovian open quantum systems.
Our new approach holds the potential to surpass the bottlenecks of current quantum chemical research.
arXiv Detail & Related papers (2024-12-23T02:53:05Z) - Differentiable Quantum Computing for Large-scale Linear Control [26.118874431217165]
We introduce an end-to-end quantum algorithm for linear-quadratic control with provable speedups.
Our algorithm, based on a policy gradient method, incorporates a novel quantum subroutine for solving the matrix Lyapunov equation.
arXiv Detail & Related papers (2024-11-03T00:54:33Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Mixed-Dimensional Qudit State Preparation Using Edge-Weighted Decision Diagrams [3.393749500700096]
Quantum computers have the potential to solve intractable problems.
One key element to exploiting this potential is the capability to efficiently prepare quantum states for multi-valued, or qudit, systems.
In this paper, we investigate quantum state preparation with a focus on mixed-dimensional systems.
arXiv Detail & Related papers (2024-06-05T18:00:01Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum Dynamical Hamiltonian Monte Carlo [0.0]
A ubiquitous problem in machine learning is sampling from probability distributions that we only have access to via their log probability.
We extend the well-known Hamiltonian Monte Carlo (HMC) method for Chain Monte Carlo (MCMC) sampling to leverage quantum computation in a hybrid manner.
arXiv Detail & Related papers (2024-03-04T07:08:23Z) - Quantum Amplitude Estimation for Probabilistic Methods in Power Systems [0.0]
Iterative Quantum Amplitude Estimation (IQAE), Maximum Likelihood Amplitude Estimation (MLAE), and Faster Amplitude Estimation (FAE) are presented.
arXiv Detail & Related papers (2023-09-29T14:56:29Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Preparing random state for quantum financing with quantum walks [1.2074552857379273]
We propose an efficient approach to load classical data into quantum states that can be executed by quantum computers or quantum simulators on classical hardware.
A practical example of implementing SSQW using Qiskit has been released as open-source software.
Showing its potential as a promising method for generating desired probability amplitude distributions highlights the potential application of SSQW in option pricing through quantum simulation.
arXiv Detail & Related papers (2023-02-24T08:01:35Z) - Tensor Networks or Decision Diagrams? Guidelines for Classical Quantum
Circuit Simulation [65.93830818469833]
tensor networks and decision diagrams have independently been developed with differing perspectives, terminologies, and backgrounds in mind.
We consider how these techniques approach classical quantum circuit simulation, and examine their (dis)similarities with regard to their most applicable abstraction level.
We provide guidelines for when to better use tensor networks and when to better use decision diagrams in classical quantum circuit simulation.
arXiv Detail & Related papers (2023-02-13T19:00:00Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum-assisted Monte Carlo algorithms for fermions [5.625946422295428]
We propose a family of scalable quantum-assisted Monte Carlo algorithms where the quantum computer is used at its minimal cost.
We show that the hybrid Monte Carlo framework is a general way to suppress errors in the ground state obtained from classical algorithms.
arXiv Detail & Related papers (2022-05-30T07:49:22Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Error mitigation in variational quantum eigensolvers using tailored
probabilistic machine learning [5.630204194930539]
We present a novel method that employs parametric Gaussian process regression (GPR) within an active learning framework to mitigate noise in quantum computations.
We demonstrate the effectiveness of our method on a 2-site Anderson impurity model and a 8-site Heisenberg model, using the IBM open-source quantum computing framework, Qiskit.
arXiv Detail & Related papers (2021-11-16T22:29:43Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
We investigate, within two different oracle models, the learnability of quantum circuit Born machines.
We first show a negative result, that the output distributions of super-logarithmic depth Clifford circuits are not sample-efficiently learnable.
We show that in a more powerful oracle model, namely when directly given access to samples, the output distributions of local Clifford circuits are computationally efficiently PAC learnable.
arXiv Detail & Related papers (2021-10-11T18:00:20Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Quantum Power Flow [11.828274912580074]
This letter is a proof of concept for quantum power flow (QPF) algorithms.
It underpins various unprecedentedly efficient power system analytics exploiting quantum computing.
arXiv Detail & Related papers (2021-04-11T01:03:18Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Quantum self-learning Monte Carlo with quantum Fourier transform sampler [1.961783412203541]
This paper provides a new self-learning Monte Carlo method that utilizes a quantum computer to output a proposal distribution.
The performance of this "quantum inspired" algorithm is demonstrated by some numerical simulations.
arXiv Detail & Related papers (2020-05-28T15:16:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.