論文の概要: Simple GNNs with Low Rank Non-parametric Aggregators
- arxiv url: http://arxiv.org/abs/2310.05250v2
- Date: Tue, 26 Nov 2024 22:44:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:24:30.230377
- Title: Simple GNNs with Low Rank Non-parametric Aggregators
- Title(参考訳): 低ランク非パラメトリックアグリゲータを用いた簡易GNN
- Authors: Luciano Vinas, Arash A. Amini,
- Abstract要約: 最先端(SOTA)のGNNアーキテクチャは、一般的なSSNCベンチマークデータセットに対してオーバーエンジニアリングされる可能性がある。
特徴集約を非パラメトリック学習者に置き換えることで、GNN設計プロセスを合理化できます。
- 参考スコア(独自算出の注目度): 12.108529628556944
- License:
- Abstract: We revisit recent spectral GNN approaches to semi-supervised node classification (SSNC). We posit that state-of-the-art (SOTA) GNN architectures may be over-engineered for common SSNC benchmark datasets (citation networks, page-page networks, etc.). By replacing feature aggregation with a non-parametric learner we are able to streamline the GNN design process and avoid many of the engineering complexities associated with SOTA hyperparameter selection (GNN depth, non-linearity choice, feature dropout probability, etc.). Our empirical experiments suggest conventional methods such as non-parametric regression are well suited for semi-supervised learning on sparse, directed networks and a variety of other graph types commonly found in SSNC benchmarks. Additionally, we bring attention to recent changes in evaluation conventions for SSNC benchmarking and how this may have partially contributed to rising performances over time.
- Abstract(参考訳): 我々は最近のスペクトルGNNアプローチを半教師付きノード分類(SSNC)に再考する。
我々は、一般的なSSNCベンチマークデータセット(引用ネットワーク、ページネットワークなど)に対して、最先端(SOTA)のGNNアーキテクチャがオーバーエンジニアリングされる可能性があると仮定する。
特徴集約を非パラメトリック学習者に置き換えることで、GNN設計プロセスを合理化し、SOTAハイパーパラメータ選択(GNN深さ、非線形選択、特徴ドロップアウト確率など)に関連する工学的複雑さの多くを回避することができる。
実験により,非パラメトリック回帰法のような従来の手法は,スパースや有向ネットワーク,SSNCベンチマークでよく見られるグラフ型などの半教師あり学習に適していることが示唆された。
さらに、SSNCベンチマークの評価規約の最近の変更や、これが時間の経過とともにパフォーマンス向上にどのように寄与したかにも注目する。
関連論文リスト
- Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification [7.14327815822376]
グラフトランスフォーマー(GT)は、従来のグラフニューラルネットワーク(GNN)の代替として人気がある。
本稿では,GTに対する3つの古典的GNNモデル(GCN, GAT, GraphSAGE)の性能を再評価する。
論文 参考訳(メタデータ) (2024-06-13T10:53:33Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに広く応用されている。
GNNは、大量のテストデータに基づいて推論を行うために、限られた量のトレーニングデータから潜伏パターンを学習する必要がある。
本稿では、GNNのアンサンブル学習を一歩前進させ、精度、堅牢性、敵攻撃を改善した。
論文 参考訳(メタデータ) (2023-03-20T18:24:01Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
本稿では、P(ropagational)MLPと呼ばれる中間モデルクラスを導入することにより、GNNの性能向上を本質的な能力に向ける。
PMLPは、トレーニングにおいてはるかに効率的でありながら、GNNと同等(あるいはそれ以上)に動作することを観察する。
論文 参考訳(メタデータ) (2022-12-18T08:17:32Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNNは、Vector Quantization(VQ)を使用して、パフォーマンスを損なうことなく、畳み込みベースのGNNをスケールアップするための普遍的なフレームワークである。
我々のフレームワークは,グラフ畳み込み行列の低ランク版と組み合わせた量子化表現を用いて,GNNの「隣の爆発」問題を回避する。
論文 参考訳(メタデータ) (2021-10-27T11:48:50Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Optimization and Generalization Analysis of Transduction through
Gradient Boosting and Application to Multi-scale Graph Neural Networks [60.22494363676747]
現在のグラフニューラルネットワーク(GNN)は、オーバースムーシング(over-smoothing)と呼ばれる問題のため、自分自身を深くするのは難しいことが知られている。
マルチスケールGNNは、オーバースムーシング問題を緩和するための有望なアプローチである。
マルチスケールGNNを含むトランスダクティブ学習アルゴリズムの最適化と一般化を保証する。
論文 参考訳(メタデータ) (2020-06-15T17:06:17Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z) - Node Masking: Making Graph Neural Networks Generalize and Scale Better [71.51292866945471]
グラフニューラルネットワーク(GNN)は近年,多くの関心を集めている。
本稿では,芸術空間のGNNの状態によって実行される操作をよりよく可視化するために,いくつかの理論ツールを利用する。
私たちはNode Maskingというシンプルなコンセプトを導入しました。
論文 参考訳(メタデータ) (2020-01-17T06:26:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。