論文の概要: Put Your Money Where Your Mouth Is: Evaluating Strategic Planning and Execution of LLM Agents in an Auction Arena
- arxiv url: http://arxiv.org/abs/2310.05746v2
- Date: Wed, 3 Apr 2024 03:37:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 12:52:33.897002
- Title: Put Your Money Where Your Mouth Is: Evaluating Strategic Planning and Execution of LLM Agents in an Auction Arena
- Title(参考訳): オークション場におけるLLMエージェントの戦略計画と実行の評価
- Authors: Jiangjie Chen, Siyu Yuan, Rong Ye, Bodhisattwa Prasad Majumder, Kyle Richardson,
- Abstract要約: オークションをシミュレートする新しい評価スイートであるAucArenaを紹介する。
我々は,最先端の大規模言語モデル(LLM)を用いて,入札エージェントによる計画と実行スキルのベンチマークを行う制御実験を行う。
- 参考スコア(独自算出の注目度): 25.865825113847404
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs) showcase advanced reasoning, yet NLP evaluations often depend on static benchmarks. Evaluating this necessitates environments that test strategic reasoning in dynamic, competitive scenarios requiring long-term planning. We introduce AucArena, a novel evaluation suite that simulates auctions, a setting chosen for being highly unpredictable and involving many skills related to resource and risk management, while also being easy to evaluate. We conduct controlled experiments using state-of-the-art LLMs to power bidding agents to benchmark their planning and execution skills. Our research demonstrates that LLMs, such as GPT-4, possess key skills for auction participation, such as budget management and goal adherence, which improve with adaptive strategies. This highlights LLMs' potential in modeling complex social interactions in competitive contexts. However, variability in LLM performance and occasional outperformance by simpler methods indicate opportunities for further advancements in LLM design and the value of our simulation environment for ongoing testing and refinement.
- Abstract(参考訳): 近年のLarge Language Models (LLM) の進歩は高度な推論を示すが、NLP評価は静的なベンチマークに依存することが多い。
これを評価することは、長期計画を必要とする動的で競争的なシナリオで戦略的推論をテストする必要のある環境を評価する。
AucArenaは、オークションをシミュレートする新しい評価スイートであり、非常に予測不可能で、リソースやリスク管理に関連するスキルが数多く含まれており、評価も容易である。
我々は、最先端のLLMを用いて制御実験を行い、入札エージェントに計画と実行のスキルをベンチマークさせる。
本研究は,GPT-4 などの LLM が,予算管理や目標順守といった,適応戦略によって改善されるオークション参加の鍵となるスキルを持っていることを実証する。
このことは、LLMが競合する状況下で複雑な社会的相互作用をモデル化する可能性を強調している。
しかし, 簡易な手法によるLLM性能と時折性能の変動は, LLM設計のさらなる進歩と, 継続する試験および改良のためのシミュレーション環境の価値を示す。
関連論文リスト
- BALROG: Benchmarking Agentic LLM and VLM Reasoning On Games [44.16513620589459]
本稿では,大規模言語モデル(LLM)と視覚言語モデル(VLM)のエージェント能力を評価する新しいベンチマークであるBALROGを紹介する。
私たちのベンチマークでは、熟練していない人間が数秒で解決できるタスクや、習得に何年もかかるような極めて困難なタスクなど、さまざまな難易度を持つ既存の強化学習環境を取り入れています。
より簡単なゲームでは,現行のモデルが部分的には成功しているが,より困難なタスクに苦しむことが示唆された。
論文 参考訳(メタデータ) (2024-11-20T18:54:32Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
この研究は、大規模言語モデル(LLM)の計画能力を改善するための基礎を築いた。
我々は、古典的な計画ベンチマークと自然言語シナリオの両方を含む包括的なベンチマークスイートを構築した。
本研究は,LLM計画の強化を目的としたマルチショットインコンテキスト学習について検討し,文脈長の増大と計画性能の向上の関係について検討する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - A Survey of Useful LLM Evaluation [20.048914787813263]
2段階フレームワーク:コア能力からエージェントへ」
コア能力」の段階では, LLMの推論能力, 社会的影響, ドメイン知識について議論した。
エージェントの段階では, LLMエージェントアプリケーションの動作, 計画, ツール学習の具体化を実演した。
論文 参考訳(メタデータ) (2024-06-03T02:20:03Z) - STRIDE: A Tool-Assisted LLM Agent Framework for Strategic and Interactive Decision-Making [43.734386326024016]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしており、言語能力と推論能力が顕著である。
本稿では,その戦略的意思決定能力を高めるため,メモリと特殊なツールを備えた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-25T23:25:10Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
エージェント・ディベート支援型メタ評価フレームワークであるScaleEvalを提案する。
フレームワークのコードをGitHubで公開しています。
論文 参考訳(メタデータ) (2024-01-30T07:03:32Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
大規模言語モデル(LLM)は優れた性能と幅広い実用性を持っている。
既存の評価タスクは、現実世界のシナリオにおける幅広いアプリケーションに追いつくのは難しい。
LLMの4つのコア能力は、推論、知識、信頼性、安全性などである。
この能力アーキテクチャの下では、類似したタスクを組み合わせて対応する能力を反映し、新しいタスクをシステムに簡単に追加することができる。
論文 参考訳(メタデータ) (2023-08-15T17:40:34Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。