論文の概要: LLM for SoC Security: A Paradigm Shift
- arxiv url: http://arxiv.org/abs/2310.06046v1
- Date: Mon, 9 Oct 2023 18:02:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 02:27:31.928825
- Title: LLM for SoC Security: A Paradigm Shift
- Title(参考訳): LLM for SoC Security - パラダイムシフト
- Authors: Dipayan Saha, Shams Tarek, Katayoon Yahyaei, Sujan Kumar Saha, Jingbo
Zhou, Mark Tehranipoor, Farimah Farahmandi
- Abstract要約: 大規模言語モデル(LLM)は、自然言語理解、高度な推論、プログラム合成タスクにおいて顕著な成功を祝っている。
本稿では,既存研究の詳細な分析,実践事例の紹介,総合実験の紹介,促進ガイドラインの紹介を行う。
- 参考スコア(独自算出の注目度): 10.538841854672786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the ubiquity and complexity of system-on-chip (SoC) designs increase
across electronic devices, the task of incorporating security into an SoC
design flow poses significant challenges. Existing security solutions are
inadequate to provide effective verification of modern SoC designs due to their
limitations in scalability, comprehensiveness, and adaptability. On the other
hand, Large Language Models (LLMs) are celebrated for their remarkable success
in natural language understanding, advanced reasoning, and program synthesis
tasks. Recognizing an opportunity, our research delves into leveraging the
emergent capabilities of Generative Pre-trained Transformers (GPTs) to address
the existing gaps in SoC security, aiming for a more efficient, scalable, and
adaptable methodology. By integrating LLMs into the SoC security verification
paradigm, we open a new frontier of possibilities and challenges to ensure the
security of increasingly complex SoCs. This paper offers an in-depth analysis
of existing works, showcases practical case studies, demonstrates comprehensive
experiments, and provides useful promoting guidelines. We also present the
achievements, prospects, and challenges of employing LLM in different SoC
security verification tasks.
- Abstract(参考訳): system-on-chip (soc) 設計のユビキタス性と複雑さが電子機器全体にわたって増大するにつれ、soc設計フローにセキュリティを組み込む作業は大きな課題となる。
既存のセキュリティソリューションは、スケーラビリティ、包括性、適応性に制限があるため、現代のSoC設計を効果的に検証するには不十分である。
一方、Large Language Models(LLM)は、自然言語理解、高度な推論、プログラム合成タスクにおいて顕著な成功を収めている。
機会を認識して、私たちの研究は、より効率的でスケーラブルで適応可能な方法論を目指して、SoCセキュリティの既存のギャップに対処するために、ジェネレーティブプレトレーニングトランスフォーマー(GPT)の創発的能力を活用することに注力しています。
LLMをSoCのセキュリティ検証パラダイムに統合することで、より複雑なSoCのセキュリティを確保するために、可能性と課題の新しいフロンティアが開かれる。
本稿は,既存の作品の詳細な分析,実践事例の紹介,総合的な実験の紹介,有用なプロモーションガイドラインを提供する。
また,異なるsocセキュリティ検証タスクにおけるllm活用の成果,展望,課題について述べる。
関連論文リスト
- In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [97.82118821263825]
テキスト・ツー・イメージ(T2I)モデルは目覚ましい進歩を見せているが、有害なコンテンツを生成する可能性はまだMLコミュニティにとって重要な関心事である。
ICERは,解釈可能かつ意味論的に意味のある重要なプロンプトを生成する新しい赤チームフレームワークである。
我々の研究は、より堅牢な安全メカニズムをT2Iシステムで開発するための重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-25T04:17:24Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - Enhancing Enterprise Security with Zero Trust Architecture [0.0]
Zero Trust Architecture (ZTA) は、現代のサイバーセキュリティに対する変革的なアプローチである。
ZTAは、ユーザ、デバイス、システムがデフォルトで信頼できないことを前提として、セキュリティパラダイムをシフトする。
本稿では、アイデンティティとアクセス管理(IAM)、マイクロセグメンテーション、継続的監視、行動分析など、ZTAの重要なコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-10-23T21:53:16Z) - Cross-Modality Safety Alignment [73.8765529028288]
我々は、モダリティ間の安全アライメントを評価するために、セーフインプットとアンセーフアウトプット(SIUO)と呼ばれる新しい安全アライメントの課題を導入する。
この問題を実証的に調査するため,我々はSIUOを作成した。SIUOは,自己修復,違法行為,プライバシー侵害など,9つの重要な安全領域を含むクロスモダリティベンチマークである。
以上の結果から, クローズドおよびオープンソース両方のLVLMの安全性上の重大な脆弱性が明らかとなり, 複雑で現実的なシナリオを確実に解釈し, 応答する上で, 現行モデルが不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T16:14:15Z) - Sok: Comprehensive Security Overview, Challenges, and Future Directions of Voice-Controlled Systems [10.86045604075024]
Voice Control Systemsをスマートデバイスに統合することで、セキュリティの重要性が強調される。
現在の研究では、VCSの脆弱性が多数発見され、ユーザのプライバシとセキュリティに重大なリスクが提示されている。
本稿では,VCSの階層的モデル構造を導入し,既存の文献を体系的に分類・分析するための新しいレンズを提供する。
我々は,その技術的原則に基づいて攻撃を分類し,その方法,目標,ベクトル,行動など,さまざまな属性を徹底的に評価する。
論文 参考訳(メタデータ) (2024-05-27T12:18:46Z) - Evolutionary Large Language Models for Hardware Security: A Comparative Survey [0.4642370358223669]
本研究では,レジスタ転送レベル(RTL)設計におけるLLM(Large Language Models)統合の種について検討する。
LLMは、HW設計に固有のセキュリティ関連脆弱性を自動的に修正するために利用することができる。
論文 参考訳(メタデータ) (2024-04-25T14:42:12Z) - Building Guardrails for Large Language Models [19.96292920696796]
LLMの入力や出力をフィルタリングするガードレールは、コアセーフガード技術として登場した。
このポジションペーパーでは、現在のオープンソースソリューション(Llama Guard, Nvidia NeMo, Guardrails AI)を詳しく調べ、より完全なソリューションを構築するための課題と道筋について論じる。
論文 参考訳(メタデータ) (2024-02-02T16:35:00Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
大規模言語モデル(LLM)は、自然言語処理アプリケーションにおいて、ますます重要な役割を担っている。
本稿では,SODE(Safety and Over-Defensiveness Evaluation)ベンチマークを提案する。
論文 参考訳(メタデータ) (2023-12-30T17:37:06Z) - Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs [11.853500347907826]
協力的インテリジェントトランスポーテーションシステム(C-ITS)はこの進化の最前線にある。
本稿では,C-ITSのサイバーセキュリティの研究,試験,評価を促進するために設計された,CSCE(Cybersecurity Centre of Excellence)を提案する。
論文 参考訳(メタデータ) (2023-12-22T13:42:53Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。