SCAR: Power Side-Channel Analysis at RTL-Level
- URL: http://arxiv.org/abs/2310.06257v1
- Date: Tue, 10 Oct 2023 02:03:52 GMT
- Title: SCAR: Power Side-Channel Analysis at RTL-Level
- Authors: Amisha Srivastava, Sanjay Das, Navnil Choudhury, Rafail Psiakis, Pedro
Henrique Silva, Debjit Pal, Kanad Basu
- Abstract summary: Power side-channel attacks exploit the dynamic power consumption of cryptographic operations to leak sensitive information of encryption hardware.
Scar is a novel pre-silicon power side-channel analysis framework based on Graph Neural Networks (GNN)
Scar achieves up to 94.49% localization accuracy, 100% precision, and 90.48% recall on popular encryption algorithms.
- Score: 1.9010491069067408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Power side-channel attacks exploit the dynamic power consumption of
cryptographic operations to leak sensitive information of encryption hardware.
Therefore, it is necessary to conduct power side-channel analysis for assessing
the susceptibility of cryptographic systems and mitigating potential risks.
Existing power side-channel analysis primarily focuses on post-silicon
implementations, which are inflexible in addressing design flaws, leading to
costly and time-consuming post-fabrication design re-spins. Hence, pre-silicon
power side-channel analysis is required for early detection of vulnerabilities
to improve design robustness. In this paper, we introduce SCAR, a novel
pre-silicon power side-channel analysis framework based on Graph Neural
Networks (GNN). SCAR converts register-transfer level (RTL) designs of
encryption hardware into control-data flow graphs and use that to detect the
design modules susceptible to side-channel leakage. Furthermore, we incorporate
a deep learning-based explainer in SCAR to generate quantifiable and
human-accessible explanation of our detection and localization decisions. We
have also developed a fortification component as a part of SCAR that uses
large-language models (LLM) to automatically generate and insert additional
design code at the localized zone to shore up the side-channel leakage. When
evaluated on popular encryption algorithms like AES, RSA, and PRESENT, and
postquantum cryptography algorithms like Saber and CRYSTALS-Kyber, SCAR,
achieves up to 94.49% localization accuracy, 100% precision, and 90.48% recall.
Additionally, through explainability analysis, SCAR reduces features for GNN
model training by 57% while maintaining comparable accuracy. We believe that
SCAR will transform the security-critical hardware design cycle, resulting in
faster design closure at a reduced design cost.
Related papers
- Large-Scale Model Enabled Semantic Communication Based on Robust Knowledge Distillation [53.16213723669751]
Large-scale models (LSMs) can be an effective framework for semantic representation and understanding.<n>However, their direct deployment is often hindered by high computational complexity and resource requirements.<n>This paper proposes a novel knowledge distillation based semantic communication framework.
arXiv Detail & Related papers (2025-08-04T07:47:18Z) - PoSyn: Secure Power Side-Channel Aware Synthesis [1.5649928667204427]
PoSyn is a novel logic synthesis framework designed to enhance cryptographic hardware resistance against PSC attacks.<n>We evaluate PoSyn across various cryptographic hardware implementations, including AES, RSA, PRESENT, and post-quantum cryptographic algorithms such as Saber and CRYSTALS-Kyber.
arXiv Detail & Related papers (2025-06-09T21:41:47Z) - Fooling the Decoder: An Adversarial Attack on Quantum Error Correction [49.48516314472825]
In this work, we target a basic RL surface code decoder (DeepQ) to create the first adversarial attack on quantum error correction.
We demonstrate an attack that reduces the logical qubit lifetime in memory experiments by up to five orders of magnitude.
This attack highlights the susceptibility of machine learning-based QEC and underscores the importance of further research into robust QEC methods.
arXiv Detail & Related papers (2025-04-28T10:10:05Z) - Learning to Localize Leakage of Cryptographic Sensitive Variables [13.98875599619791]
We develop a principled deep learning framework for determining the relative leakage due to measurements recorded at different points in time.
This information is invaluable to cryptographic hardware designers for understanding *why* their hardware leaks.
arXiv Detail & Related papers (2025-03-10T15:42:30Z) - Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.
These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.
We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - PCA-Featured Transformer for Jamming Detection in 5G UAV Networks [0.5999777817331317]
Unmanned Aerial Vehicles (UAVs) face significant security risks from jamming attacks, which can compromise network functionality.
Traditional detection methods often fall short when confronting AI-powered jamming that dynamically modifies its behavior.
We introduce a novel U-shaped transformer architecture to refine feature representations for improved wireless security.
arXiv Detail & Related papers (2024-12-19T16:13:04Z) - Lost and Found in Speculation: Hybrid Speculative Vulnerability Detection [15.258238125090667]
We introduce Specure, a novel pre-silicon verification method composing hardware fuzzing with Information Flow Tracking (IFT) to address speculative execution leakages.
Specure identifies previously overlooked speculative execution vulnerabilities on the RISC-V BOOM processor and explores the vulnerability search space 6.45x faster than existing fuzzing techniques.
arXiv Detail & Related papers (2024-10-29T21:42:06Z) - DeepiSign-G: Generic Watermark to Stamp Hidden DNN Parameters for Self-contained Tracking [15.394110881491773]
DeepiSign-G is a versatile watermarking approach designed for comprehensive verification of leading DNN architectures, including CNNs and RNNs.
Unlike traditional hashing techniques, DeepiSign-G allows substantial metadata incorporation directly within the model, enabling detailed, self-contained tracking and verification.
We demonstrate DeepiSign-G's applicability across various architectures, including CNN models (VGG, ResNets, DenseNet) and RNNs (Text sentiment classifiers)
arXiv Detail & Related papers (2024-07-01T13:15:38Z) - DT-DDNN: A Physical Layer Security Attack Detector in 5G RF Domain for
CAVs [11.15939066175832]
jamming attacks pose substantial risks to the 5G network.
This work presents a novel deep learning-based technique for detecting jammers in CAV networks.
Results show that the proposed method achieves 96.4% detection rate in extra low jamming power.
arXiv Detail & Related papers (2024-03-05T04:29:31Z) - Towards Efficient Verification of Constant-Time Cryptographic
Implementations [5.433710892250037]
Constant-time programming discipline is an effective software-based countermeasure against timing side-channel attacks.
We put forward practical verification approaches based on a novel synergy of taint analysis and safety verification of self-composed programs.
Our approach is implemented as a cross-platform and fully automated tool CT-Prover.
arXiv Detail & Related papers (2024-02-21T03:39:14Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - On Borrowed Time -- Preventing Static Side-Channel Analysis [13.896152066919036]
adversaries exploit leakage or response behaviour of integrated circuits in a static state.
Members of this class include Static Power Side-Channel Analysis (SCA), Laser Logic State Imaging (LLSI) and Impedance Analysis (IA)
arXiv Detail & Related papers (2023-07-18T06:36:04Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Learning-Based Vulnerability Analysis of Cyber-Physical Systems [10.066594071800337]
This work focuses on the use of deep learning for vulnerability analysis of cyber-physical systems.
We consider a control architecture widely used in CPS (e.g., robotics) where the low-level control is based on e.g., the extended Kalman filter (EKF) and an anomaly detector.
To facilitate analyzing the impact potential sensing attacks could have, our objective is to develop learning-enabled attack generators.
arXiv Detail & Related papers (2021-03-10T06:52:26Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
We build upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction.
An input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram.
The corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters.
The encoded features are then down-streamed to the local RNN model for the final recognition.
arXiv Detail & Related papers (2020-10-26T03:36:01Z) - Noise-Response Analysis of Deep Neural Networks Quantifies Robustness
and Fingerprints Structural Malware [48.7072217216104]
Deep neural networks (DNNs) have structural malware' (i.e., compromised weights and activation pathways)
It is generally difficult to detect backdoors, and existing detection methods are computationally expensive and require extensive resources (e.g., access to the training data)
Here, we propose a rapid feature-generation technique that quantifies the robustness of a DNN, fingerprints' its nonlinearity, and allows us to detect backdoors (if present)
Our empirical results demonstrate that we can accurately detect backdoors with high confidence orders-of-magnitude faster than existing approaches (seconds versus
arXiv Detail & Related papers (2020-07-31T23:52:58Z) - Automatic Perturbation Analysis for Scalable Certified Robustness and
Beyond [171.07853346630057]
Linear relaxation based perturbation analysis (LiRPA) for neural networks has become a core component in robustness verification and certified defense.
We develop an automatic framework to enable perturbation analysis on any neural network structures.
We demonstrate LiRPA based certified defense on Tiny ImageNet and Downscaled ImageNet.
arXiv Detail & Related papers (2020-02-28T18:47:43Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
In multiuser multiple-input multiple-output (MIMO) setups, where multiple symbols are simultaneously transmitted, accurate symbol detection is challenging.
We propose a data-driven implementation of the iterative soft interference cancellation (SIC) algorithm which we refer to as DeepSIC.
DeepSIC learns to carry out joint detection from a limited set of training samples without requiring the channel to be linear.
arXiv Detail & Related papers (2020-02-08T18:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.