論文の概要: SAM-OCTA: Prompting Segment-Anything for OCTA Image Segmentation
- arxiv url: http://arxiv.org/abs/2310.07183v1
- Date: Wed, 11 Oct 2023 04:14:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 00:38:03.972095
- Title: SAM-OCTA: Prompting Segment-Anything for OCTA Image Segmentation
- Title(参考訳): SAM-OCTA:OCTA画像セグメンテーションのためのセグメンテーション
- Authors: Xinrun Chen, Chengliang Wang, Haojian Ning, Shiying Li
- Abstract要約: 既存のメソッドは通常、限られたサンプルを持つ教師付きデータセットでトレーニングする。
これを解決するため,基礎モデルの微調整に低ランク適応手法を採用し,それに対応するプロンプトポイント生成戦略を提案する。
この手法はSAM-OCTAと呼ばれ、OCTA-500およびROSEデータセットで実験されている。
網膜血管, 胎児血管帯, 毛細血管, 動脈, 静脈分節タスクに対するプロンプトポイントの効果と適用性について検討した。
- 参考スコア(独自算出の注目度): 2.8743451550676866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the analysis of optical coherence tomography angiography (OCTA) images,
the operation of segmenting specific targets is necessary. Existing methods
typically train on supervised datasets with limited samples (approximately a
few hundred), which can lead to overfitting. To address this, the low-rank
adaptation technique is adopted for foundation model fine-tuning and proposed
corresponding prompt point generation strategies to process various
segmentation tasks on OCTA datasets. This method is named SAM-OCTA and has been
experimented on the publicly available OCTA-500 and ROSE datasets. This method
achieves or approaches state-of-the-art segmentation performance metrics. The
effect and applicability of prompt points are discussed in detail for the
retinal vessel, foveal avascular zone, capillary, artery, and vein segmentation
tasks. Furthermore, SAM-OCTA accomplishes local vessel segmentation and
effective artery-vein segmentation, which was not well-solved in previous
works. The code is available at https://github.com/ShellRedia/SAM-OCTA.
- Abstract(参考訳): 光コヒーレンストモグラフィー血管造影(OCTA)画像の解析では,特定の目標をセグメンティングする操作が必要である。
既存のメソッドは通常、限られたサンプル(約数百)を持つ教師付きデータセットでトレーニングする。
これを解決するため,基礎モデルの微調整に低ランク適応手法を採用し,OCTAデータセット上で様々なセグメンテーションタスクを処理するためのプロンプトポイント生成戦略を提案する。
この手法はSAM-OCTAと呼ばれ、OCTA-500およびROSEデータセットで実験されている。
この手法は最先端のセグメンテーション性能指標を実現またはアプローチする。
網膜血管,foveal avascular zone,毛細血管,動脈,静脈分画について,プロンプトポイントの効果と応用性について詳細に検討した。
さらにSAM-OCTAは,従来の研究では未解決であった局所血管分節と有効動脈静脈分節を実現している。
コードはhttps://github.com/ShellRedia/SAM-OCTAで公開されている。
関連論文リスト
- SAM-OCTA2: Layer Sequence OCTA Segmentation with Fine-tuned Segment Anything Model 2 [2.314516220934268]
SAM(Segment Anything Model)バージョン2の微調整には低ランク適応方式が採用されている。
メソッドはSAM-OCTA2と呼ばれ、OCTA-500データセットで実験されている。
正常な2次元の面にFoveal avascular zone(FAZ)を分断し、スキャン層をまたいだ局所血管を効果的に追跡する。
論文 参考訳(メタデータ) (2024-09-14T03:28:24Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - Test-Time Adaptation with SaLIP: A Cascade of SAM and CLIP for Zero shot Medical Image Segmentation [10.444726122035133]
臓器分割のための単純な統合フレームワークSaLIPを提案する。
SAMは画像内の部分ベースのセグメンテーションに使用され、CLIPは関心領域に対応するマスクを検索する。
最後に、SAMは検索されたROIによって特定の臓器を分節するように促される。
論文 参考訳(メタデータ) (2024-04-09T14:56:34Z) - I-MedSAM: Implicit Medical Image Segmentation with Segment Anything [24.04558900909617]
提案するI-MedSAMは、連続表現とSAMの両方の利点を利用して、クロスドメイン能力と正確な境界線を求める。
トレーニング可能なパラメータが1.6Mしかない提案手法は、離散的および暗黙的を含む既存の手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-28T00:43:52Z) - SAM-OCTA: A Fine-Tuning Strategy for Applying Foundation Model to OCTA
Image Segmentation Tasks [2.8743451550676866]
低ランク適応手法を基礎モデル微調整に適用し,それに対応するプロンプトポイント生成戦略を提案する。
この手法はSAM-OCTAと呼ばれ、OCTA-500データセットで実験されている。
本手法は,最先端の性能指標を達成しつつ,局所血管の分断と動脈静脈の分断を効果的に行う。
論文 参考訳(メタデータ) (2023-09-21T03:41:08Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - SamDSK: Combining Segment Anything Model with Domain-Specific Knowledge
for Semi-Supervised Learning in Medical Image Segmentation [27.044797468878837]
Segment Anything Model (SAM)は、自然画像に広範囲のオブジェクトを分割する機能を示す。
本稿では、SAMとドメイン固有の知識を組み合わせて、ラベルなし画像の信頼性の高い利用法を提案する。
本研究は,医用画像セグメンテーションのための半教師あり学習の新たな方向性を創出する。
論文 参考訳(メタデータ) (2023-08-26T04:46:10Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Self-supervised Image-specific Prototype Exploration for Weakly
Supervised Semantic Segmentation [72.33139350241044]
画像レベルのラベルをベースとしたWSSS(Weakly Supervised Semantic COCO)は,アノテーションコストの低さから注目されている。
本稿では,画像特異的なプロトタイプ探索 (IPE) と汎用一貫性 (GSC) の喪失からなる画像固有プロトタイプ探索 (SIPE) を提案する。
SIPEは,画像レベルラベルのみを用いて,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-03-06T09:01:03Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。