論文の概要: An On-Chip Trainable Neuron Circuit for SFQ-Based Spiking Neural
Networks
- arxiv url: http://arxiv.org/abs/2310.07824v1
- Date: Wed, 11 Oct 2023 19:04:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-14 14:03:01.296555
- Title: An On-Chip Trainable Neuron Circuit for SFQ-Based Spiking Neural
Networks
- Title(参考訳): SFQに基づくスパイクニューラルネットワークのためのオンチップ学習型ニューロン回路
- Authors: Beyza Zeynep Ucpinar, Mustafa Altay Karamuftuoglu, Sasan Razmkhah,
Massoud Pedram
- Abstract要約: スパイキングニューラルネットワーク(SNN)のトレーニングのためのオンチップトレーニング可能なニューロン回路を提案する。
提案回路は,スパイクニューラルネットワーク(SNN)のトレーニングのためのバイオインスパイクに基づく時間依存データ計算に適合する。
回路はMIT LLQ5ee製造プロセス用に設計・最適化されている。
- 参考スコア(独自算出の注目度): 4.825037489691159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an on-chip trainable neuron circuit. Our proposed circuit suits
bio-inspired spike-based time-dependent data computation for training spiking
neural networks (SNN). The thresholds of neurons can be increased or decreased
depending on the desired application-specific spike generation rate. This
mechanism provides us with a flexible design and scalable circuit structure. We
demonstrate the trainable neuron structure under different operating scenarios.
The circuits are designed and optimized for the MIT LL SFQ5ee fabrication
process. Margin values for all parameters are above 25\% with a 3GHz throughput
for a 16-input neuron.
- Abstract(参考訳): オンチップトレーニング可能なニューロン回路を提案する。
提案回路は,スパイクニューラルネットワーク(SNN)のトレーニングのためのバイオインスパイクに基づく時間依存データ計算に適合する。
ニューロンの閾値は、所望のアプリケーション固有のスパイク発生率に応じて増大または減少することができる。
このメカニズムは柔軟な設計とスケーラブルな回路構造を提供します。
異なる動作シナリオで学習可能なニューロン構造を示す。
回路はMIT LL SFQ5eeの製造プロセス用に設計・最適化されている。
全パラメータのマージン値は25\%以上で、16入力ニューロンのスループットは3GHzである。
関連論文リスト
- Time-independent Spiking Neuron via Membrane Potential Estimation for Efficient Spiking Neural Networks [4.142699381024752]
スパイキングニューラルネットワーク(SNN)の計算的非効率性は、主に膜電位の逐次更新によるものである。
スパイキングニューロンの並列計算法である膜電位推定並列スパイキングニューロン(MPE-PSN)を提案する。
提案手法では,特に高次ニューロン密度条件下での計算効率の向上が期待できる。
論文 参考訳(メタデータ) (2024-09-08T05:14:22Z) - Speed Limits for Deep Learning [67.69149326107103]
熱力学の最近の進歩は、初期重量分布から完全に訓練されたネットワークの最終分布への移動速度の制限を可能にする。
線形および線形化可能なニューラルネットワークに対して,これらの速度制限に対する解析式を提供する。
NTKスペクトルとラベルのスペクトル分解に関するいくつかの妥当なスケーリング仮定を考えると、学習はスケーリングの意味で最適である。
論文 参考訳(メタデータ) (2023-07-27T06:59:46Z) - Accelerating SNN Training with Stochastic Parallelizable Spiking Neurons [1.7056768055368383]
スパイキングニューラルネットワーク(SNN)は、特にニューロモルフィックハードウェアにおいて、少ないエネルギーを使用しながら特徴を学習することができる。
深層学習において最も広く用いられるニューロンは、時間と火災(LIF)ニューロンである。
論文 参考訳(メタデータ) (2023-06-22T04:25:27Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
イベントベースの計算を伴うスパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェアにおけるエネルギー効率の高い応用のために、脳にインスパイアされたモデルを約束している。
本研究では,最近提案されたトレーニング手法を拡張した平衡状態(SPIDE)に対するスパイクに基づく暗黙差分法について検討した。
論文 参考訳(メタデータ) (2023-02-01T04:22:59Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
インメモリコンピューティング 混合信号ニューロモルフィックアーキテクチャはエッジコンピューティングのセンサ処理への応用に期待できる超低消費電力のソリューションを提供する。
本稿では、FDSOI(Fully-Depleted Silicon on Insulator)統合プロセスの特徴を利用する混合信号アナログ/デジタル回路を提案する。
論文 参考訳(メタデータ) (2020-06-25T09:31:29Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
本稿では,勾配降下による終端から終端までのアナログニューラルネットワークの学習法を提案する。
数学的には、アナログニューラルネットワークのクラス(非線形抵抗性ネットワークと呼ばれる)がエネルギーベースモデルであることが示される。
我々の研究は、オンチップ学習をサポートする、超高速でコンパクトで低消費電力のニューラルネットワークの新世代の開発を導くことができる。
論文 参考訳(メタデータ) (2020-06-02T23:38:35Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z) - Training of Quantized Deep Neural Networks using a Magnetic Tunnel
Junction-Based Synapse [23.08163992580639]
深層ニューラルネットワークの計算複雑性とメモリ強度のソリューションとして、量子ニューラルネットワーク(QNN)が積極的に研究されている。
磁気トンネル接合(MTJ)デバイスがQNNトレーニングにどのように役立つかを示す。
本稿では,MTJ動作を用いた新しいシナプス回路を導入し,量子化更新をサポートする。
論文 参考訳(メタデータ) (2019-12-29T11:36:32Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
我々は, プレ・グポストシナプスのパートナーを常に切り替えることにより, 構造的可塑性を達成するための戦略を提案する。
我々はこのアルゴリズムをアナログニューロモルフィックシステムBrainScaleS-2に実装した。
ネットワークトポロジを最適化する能力を示し、簡単な教師付き学習シナリオで実装を評価した。
論文 参考訳(メタデータ) (2019-12-27T10:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。