論文の概要: Frequency-Aware Re-Parameterization for Over-Fitting Based Image
Compression
- arxiv url: http://arxiv.org/abs/2310.08068v1
- Date: Thu, 12 Oct 2023 06:32:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-15 11:09:49.870559
- Title: Frequency-Aware Re-Parameterization for Over-Fitting Based Image
Compression
- Title(参考訳): オーバーフィッティングに基づく画像圧縮のための周波数認識再パラメータ化
- Authors: Yun Ye, Yanjie Pan, Qually Jiang, Ming Lu, Xiaoran Fang, Beryl Xu
- Abstract要約: オーバーフィットベースの画像圧縮は、圧縮のための重み付け圧縮と実用のための高速収束を必要とする。
本稿では、重みを減らし収束を加速したCNNを訓練するための簡易な再パラメータ化法を提案する。
提案手法は, HEIF上に最大-46.12%のBDレートを達成し, 200回しか繰り返しない画像復元実験により検証した。
- 参考スコア(独自算出の注目度): 12.725194101094711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over-fitting-based image compression requires weights compactness for
compression and fast convergence for practical use, posing challenges for deep
convolutional neural networks (CNNs) based methods. This paper presents a
simple re-parameterization method to train CNNs with reduced weights storage
and accelerated convergence. The convolution kernels are re-parameterized as a
weighted sum of discrete cosine transform (DCT) kernels enabling direct
optimization in the frequency domain. Combined with L1 regularization, the
proposed method surpasses vanilla convolutions by achieving a significantly
improved rate-distortion with low computational cost. The proposed method is
verified with extensive experiments of over-fitting-based image restoration on
various datasets, achieving up to -46.12% BD-rate on top of HEIF with only 200
iterations.
- Abstract(参考訳): オーバーフィットベースの画像圧縮は、圧縮のための重み付け圧縮と実用のための高速収束を必要とし、深層畳み込みニューラルネットワーク(CNN)ベースの手法の課題を提起する。
本稿では,重みを減らし収束を加速したCNNの簡易な再パラメータ化手法を提案する。
畳み込み核は、周波数領域の直接最適化を可能にする離散コサイン変換(dct)カーネルの重み付き和として再パラメータ化される。
提案手法は,L1正則化と組み合わせて,計算コストの低い速度歪みを著しく改善することにより,バニラ畳み込みを克服する。
提案手法は,様々なデータセット上での過剰フィッティングに基づく画像復元の広範な実験により検証され,200回の反復で最大46.12%のbdレートを達成した。
関連論文リスト
- Convolutional Neural Network Compression Based on Low-Rank Decomposition [3.3295360710329738]
本稿では,変分ベイズ行列分解を組み込んだモデル圧縮法を提案する。
VBMFは各層における重みテンソルのランクを推定するために用いられる。
その結果, 高圧縮比と低圧縮比では, 圧縮モデルの性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-29T06:40:34Z) - Reduced storage direct tensor ring decomposition for convolutional neural networks compression [0.0]
記憶率の低下した直接テンソルリング分解(RSDTR)に基づく新しい低ランクCNN圧縮法を提案する。
提案手法は, 円モードの順応性が高く, パラメータが大きいこと, FLOPS圧縮率が高いことが特徴である。
CIFAR-10とImageNetデータセットで実施された実験は、他の最先端のCNN圧縮アプローチと比較して、RDDTRの効率を明らかに示している。
論文 参考訳(メタデータ) (2024-05-17T14:16:40Z) - Compression with Bayesian Implicit Neural Representations [16.593537431810237]
本稿では,データに変分ニューラルネットワークをオーバーフィッティングし,相対エントロピー符号化を用いて近似後重みサンプルを圧縮し,量子化やエントロピー符号化を行う。
実験により,本手法は単純さを維持しつつ,画像および音声の圧縮に強い性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-05-30T16:29:52Z) - Unified Multivariate Gaussian Mixture for Efficient Neural Image
Compression [151.3826781154146]
先行変数と超優先度を持つ潜伏変数は、変動画像圧縮において重要な問題である。
ベクトル化された視点で潜伏変数を観察する際、相関関係や相関関係は存在する。
当社のモデルでは、速度歪曲性能が向上し、圧縮速度が3.18倍に向上した。
論文 参考訳(メタデータ) (2022-03-21T11:44:17Z) - Learning True Rate-Distortion-Optimization for End-To-End Image
Compression [59.816251613869376]
速度歪みの最適化は、従来の画像圧縮とビデオ圧縮の重要な部分である。
本稿では,RDO結果の低複雑さ推定をトレーニングに導入することにより,トレーニングの強化を図る。
我々は以前のRDONetモデルに比べてMS-SSIMで平均19.6%のレートセーブを実現し、従来のディープイメージコーダに比べて27.3%のレートセーブを実現した。
論文 参考訳(メタデータ) (2022-01-05T13:02:00Z) - Modeling Image Quantization Tradeoffs for Optimal Compression [0.0]
ロスシー圧縮アルゴリズムは、圧縮率を上げるために高周波データを定量化することでトレードオフを狙う。
本稿では,Deep Learningとminimax損失関数を用いた量子化テーブルの最適化手法を提案する。
論文 参考訳(メタデータ) (2021-12-14T07:35:22Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - Substitutional Neural Image Compression [48.20906717052056]
置換型ニューラルイメージ圧縮(snic)は、あらゆるニューラルイメージ圧縮モデルを強化する一般的なアプローチである。
フレキシブルな歪みメトリックに向けて圧縮性能を高め、単一のモデルインスタンスを使用したビットレート制御を可能にする。
論文 参考訳(メタデータ) (2021-05-16T20:53:31Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
スペクトルctを用いたマルチマテリアル画像再構成のためのモデルベース最大後課題の解決法を提案する。
特に,プラグイン画像復号化機能に基づく正規化最適化問題について提案する。
スペクトルct材料分解の数値的および実験的結果を示す。
論文 参考訳(メタデータ) (2021-03-25T15:20:10Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) は閾値に基づくスペーシフィケーションスキームであり、DGCと同等のしきい値推定品質を享受する。
SIDCoは,非圧縮ベースライン,Topk,DGC圧縮機と比較して,最大で41:7%,7:6%,1:9%の速度でトレーニングを高速化する。
論文 参考訳(メタデータ) (2021-01-26T13:06:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。