論文の概要: Harnessing the Power of LLM to Support Binary Taint Analysis
- arxiv url: http://arxiv.org/abs/2310.08275v2
- Date: Thu, 12 Dec 2024 02:29:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:30:13.553535
- Title: Harnessing the Power of LLM to Support Binary Taint Analysis
- Title(参考訳): LLMの高調度化による二分音聴取支援
- Authors: Puzhuo Liu, Chengnian Sun, Yaowen Zheng, Xuan Feng, Chuan Qin, Yuncheng Wang, Zhenyang Xu, Zhi Li, Peng Di, Yu Jiang, Limin Sun,
- Abstract要約: LATTEは、大規模言語モデル(LLM)を利用した最初の静的バイナリ・テナント解析である。
まず、LATTEは完全に自動化されているが、以前の静的バイナリのテナントアナライザは、テナント伝搬ルールと脆弱性検査ルールを手動でカスタマイズするために、人間の専門知識に依存する必要がある。
第2に、LATTEは脆弱性検出に極めて有効であり、包括的評価によって実証された。
- 参考スコア(独自算出の注目度): 18.068393213293188
- License:
- Abstract: This paper proposes LATTE, the first static binary taint analysis that is powered by a large language model (LLM). LATTE is superior to the state of the art (e.g., Emtaint, Arbiter, Karonte) in three aspects. First, LATTE is fully automated while prior static binary taint analyzers need rely on human expertise to manually customize taint propagation rules and vulnerability inspection rules. Second, LATTE is significantly effective in vulnerability detection, demonstrated by our comprehensive evaluations. For example, LATTE has found 37 new bugs in real-world firmware which the baselines failed to find, and 7 of them have been assigned CVE numbers. Lastly, LATTE incurs remarkably low engineering cost, making it a cost-efficient and scalable solution for security researchers and practitioners. We strongly believe that LATTE opens up a new direction to harness the recent advance in LLMs to improve vulnerability analysis for binary programs.
- Abstract(参考訳): 本稿では,大規模言語モデル (LLM) を利用した最初の静的バイナリ・テナント解析である LATTE を提案する。
LATTEは最先端(例: Emtaint, Arbiter, Karonte)よりも3つの面で優れている。
まず、LATTEは完全に自動化されているが、以前の静的バイナリのテナントアナライザは、テナント伝搬ルールと脆弱性検査ルールを手動でカスタマイズするために、人間の専門知識に依存する必要がある。
第2に、LATTEは脆弱性検出に極めて有効であり、包括的評価によって実証された。
例えば、LATTEは、ベースラインが見つからなかった現実世界のファームウェアに37の新しいバグを発見し、そのうち7つのバグがCVE番号に割り当てられた。
最後に、LATTEはエンジニアリングコストを著しく低くし、セキュリティ研究者や実践者にとってコスト効率が高くスケーラブルなソリューションになります。
LATTEはLLMの最近の進歩を活用し、バイナリプログラムの脆弱性分析を改善するために、新たな方向性を開くと強く信じている。
関連論文リスト
- AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
本稿では,対戦型LDMをジェイルブレイク能力に富んだ反復的自己調整プロセスであるADV-LLMを紹介する。
我々のフレームワークは,様々なオープンソース LLM 上で ASR を100% 近く達成しながら,逆接接尾辞を生成する計算コストを大幅に削減する。
Llama3のみに最適化されているにもかかわらず、GPT-3.5では99%のASR、GPT-4では49%のASRを達成している。
論文 参考訳(メタデータ) (2024-10-24T06:36:12Z) - Towards Automated Penetration Testing: Introducing LLM Benchmark, Analysis, and Improvements [1.4433703131122861]
大規模言語モデル(LLM)は、サイバーセキュリティなど、さまざまな分野に可能性を示している。
現在、包括的で、オープンで、エンドツーエンドの自動浸透テストベンチマークはありません。
本稿では,LLMを用いた自動貫入試験のための新しいオープンベンチマークを提案する。
論文 参考訳(メタデータ) (2024-10-22T16:18:41Z) - PenHeal: A Two-Stage LLM Framework for Automated Pentesting and Optimal Remediation [18.432274815853116]
PenHealは2段階のLSMベースのフレームワークで、自律的に脆弱性を特定してセキュリティを確保する。
本稿では,LLMベースの2段階フレームワークであるPenHealについて紹介する。
論文 参考訳(メタデータ) (2024-07-25T05:42:14Z) - Comparison of Static Application Security Testing Tools and Large Language Models for Repo-level Vulnerability Detection [11.13802281700894]
静的アプリケーションセキュリティテスト(SAST)は通常、セキュリティ脆弱性のソースコードをスキャンするために使用される。
ディープラーニング(DL)ベースの手法は、ソフトウェア脆弱性検出の可能性を実証している。
本稿では,ソフトウェア脆弱性を検出するために,15種類のSASTツールと12種類の最先端のオープンソースLLMを比較した。
論文 参考訳(メタデータ) (2024-07-23T07:21:14Z) - SCoPE: Evaluating LLMs for Software Vulnerability Detection [0.0]
この研究は、コード関連タスクのモデルをトレーニングするために一般的に使用されるCVEFixesデータセットを調査し、洗練する。
SCoPEが生成した出力はCVEFixesの新バージョンを作成するために使われた。
その結果,SCoPEは評価されたサブセット内の905個の複製の同定に有効であった。
論文 参考訳(メタデータ) (2024-07-19T15:02:00Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
大規模言語モデル(LLM)はますます強力になってきていますが、それでも顕著ですが微妙な弱点があります。
従来のベンチマークアプローチでは、特定のモデルの欠陥を徹底的に特定することはできない。
さまざまなタスクにまたがるLLMの弱点を自動的に露呈する統合フレームワークであるAutoDetectを導入する。
論文 参考訳(メタデータ) (2024-06-24T15:16:45Z) - Harnessing Large Language Models for Software Vulnerability Detection: A Comprehensive Benchmarking Study [1.03590082373586]
ソースコードの脆弱性発見を支援するために,大規模言語モデル(LLM)を提案する。
目的は、複数の最先端のLCMをテストし、最も優れたプロンプト戦略を特定することである。
LLMは従来の静的解析ツールよりも多くの問題を特定でき、リコールやF1スコアの点で従来のツールよりも優れています。
論文 参考訳(メタデータ) (2024-05-24T14:59:19Z) - Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection [73.31406286956535]
姿勢検出タスクにLadder-of-Thought(LoT)を導入する。
LoTは、小さなLMに高品質な外部知識を同化させ、生成した中間的論理を精査するように指示する。
実験では, 姿勢検出タスクにおけるCoTのGPT-3.5よりも16%改善し, 10%向上した。
論文 参考訳(メタデータ) (2023-08-31T14:31:48Z) - Revisiting and Advancing Fast Adversarial Training Through The Lens of
Bi-Level Optimization [60.72410937614299]
提案手法は,2レベルAT(FAST-BAT)と呼ばれる新しいアルゴリズムセットの設計と解析である。
FAST-BATは、グラデーションサインメソッドや明示的なロバスト正規化を呼ぶことなく、符号ベースの投射降下(PGD)攻撃を防御することができる。
論文 参考訳(メタデータ) (2021-12-23T06:25:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。